Background: Under-five mortality in Tanzania remains a persistent issue, significantly affecting both the health and economic sectors. Despite various interventions, the under-five mortality rate (U5MR) remains high, impeding progress toward global health targets. This study investigates the factors influencing under-five mortality in Tanzania, focusing on the gross domestic product (GDP), malaria incidence, access to water, and access to sanitation.
View Article and Find Full Text PDFSchistosomiasis, a vector-borne chronically debilitating infectious disease, is a serious public health concern for humans and animals in the affected tropical and sub-tropical regions. We formulate and theoretically analyze a deterministic mathematical model with snail and bovine hosts. The basic reproduction number [Formula: see text] is computed and used to investigate the local stability of the model's steady states.
View Article and Find Full Text PDFTo mitigate the spread of schistosomiasis, a deterministic human-bovine mathematical model of its transmission dynamics accounting for contaminated water reservoirs, including treatment of bovines and humans and mollusciciding is formulated and theoretically analyzed. The disease-free equilibrium is locally and globally asymptotically stable whenever the basic reproduction number [Formula: see text], while global stability of the endemic equilibrium is investigated by constructing a suitable Lyapunov function. To support the analytical results, parameter values from published literature are used for numerical simulations and where applicable, uncertainty analysis on the non-dimensional system parameters is performed using the Latin Hypercube Sampling and Partial Rank Correlation Coefficient techniques.
View Article and Find Full Text PDFBackground: Lymphatic filariasis is a globally neglected tropical parasitic disease which affects individuals of all ages and leads to an altered lymphatic system and abnormal enlargement of body parts.
Methods: A mathematical model of lymphatic filariaris with intervention strategies is developed and analyzed. Control of infections is analyzed within the model through medical treatment of infected-acute individuals and quarantine of infected-chronic individuals.
The widespread impact of avian influenza viruses not only poses risks to birds, but also to humans. The viruses spread from birds to humans and from human to human In addition, mutation in the primary strain will increase the infectiousness of avian influenza. We developed a mathematical model of avian influenza for both bird and human populations.
View Article and Find Full Text PDFRift Valley Fever is a vector-borne disease mainly transmitted by mosquito. To gain some quantitative insights into its dynamics, a deterministic model with mosquito, livestock, and human host is formulated as a system of nonlinear ordinary differential equations and analyzed. The disease threshold [Formula: see text] is computed and used to investigate the local stability of the equilibria.
View Article and Find Full Text PDFRing vaccination can be a highly effective control strategy for an emerging disease or in the final phase of disease eradication, as witnessed in the eradication of smallpox. However, the impact of behavioural dynamics on the effectiveness of ring vaccination has not been explored in mathematical models. Here, we analyze a series of stochastic models of voluntary ring vaccination.
View Article and Find Full Text PDFBackground: There is an urgent need to understand how the provision of information influences individual risk perception and how this in turn shapes the evolution of epidemics. Individuals are influenced by information in complex and unpredictable ways. Emerging infectious diseases, such as the recent swine flu epidemic, may be particular hotspots for a media-fueled rush to vaccination; conversely, seasonal diseases may receive little media attention, despite their high mortality rate, due to their perceived lack of newness.
View Article and Find Full Text PDFWe formulate and analyze a mathematical model for malaria with treatment and the well-known three levels of resistance in humans. The model incorporates both sensitive and resistant strains of the parasites. Analytical results reveal that the model exhibits the phenomenon of backward bifurcation (co-existence of a stable disease-free equilibrium with a stable endemic equilibrium), an epidemiological situation where although necessary, having the basic reproduction number less than unity, it is not sufficient for disease elimination.
View Article and Find Full Text PDFA deterministic model for the co-interaction of HIV and malaria in a community is presented and rigorously analyzed. Two sub-models, namely the HIV-only and malaria-only sub-models, are considered first of all. Unlike the HIV-only sub-model, which has a globally-asymptotically stable disease-free equilibrium whenever the associated reproduction number is less than unity, the malaria-only sub-model undergoes the phenomenon of backward bifurcation, where a stable disease-free equilibrium co-exists with a stable endemic equilibrium, for a certain range of the associated reproduction number less than unity.
View Article and Find Full Text PDFBull Math Biol
February 2007
We formulate a realistic demographic model that captures the pattern of inheritance of the S gene, which is responsible for the most common genetic defect, namely, sickle-cell anaemia (SCA), using general pair formations. The model equation is implicitly solved via the Laplace transform technique, while the existence of a unique solution is proved by applying the contraction mapping principle. One of the main results is the boundedness of the solution.
View Article and Find Full Text PDF