D-2-hydroxyglutarate (D-2-HG) is a well-established oncometabolite of isocitrate dehydrogenase (IDH) mutant gliomas. While prior studies have demonstrated that D-2-HG is elevated in the cerebrospinal fluid (CSF) of patients with IDH-mutant gliomas , no study has determined if CSF D-2-HG can provide a plausible method to evaluate therapeutic response. We are obtaining CSF samples from consenting patients during their disease course via intra-operative collection and Ommaya reservoirs.
View Article and Find Full Text PDFEnzyme-based newborn screening for Mucopolysaccharidosis type I (MPS I) has a high false-positive rate due to the prevalence of pseudodeficiency alleles, often resulting in unnecessary and costly follow up. The glycosaminoglycans (GAGs), dermatan sulfate (DS) and heparan sulfate (HS) are both substrates for α-l-iduronidase (IDUA). These GAGs are elevated in patients with MPS I and have been shown to be promising biomarkers for both primary and second-tier testing.
View Article and Find Full Text PDFNewborn screening for one or more lysosomal disorders has been implemented in several US states, Japan and Taiwan by multiplexed enzyme assays using either tandem mass spectrometry or digital microfluidics. Another multiplex assay making use of immunocapture technology has also been proposed. To investigate the potential variability in performance of these analytical approaches, we implemented three high-throughput screening assays for the simultaneous screening for four lysosomal disorders: Fabry disease, Gaucher disease, mucopolysaccharidosis type I, and Pompe disease.
View Article and Find Full Text PDFPurpose: The implementation of newborn screening for lysosomal disorders has uncovered overall poor specificity, psychosocial harm experienced by caregivers, and costly follow-up testing of false-positive cases. We report an informatics solution proven to minimize these issues.
Methods: The Kentucky Department for Public Health outsourced testing for mucopolysaccharidosis type I (MPS I) and Pompe disease, conditions recently added to the recommended uniform screening panel, plus Krabbe disease, which was added by legislative mandate.
Objective: To compare sensitivity of inner cell mass (ICM) outgrowth assay and analysis of culture media amino acid turnover with the sensitivity of the human sperm motility assay (HSMA) and murine embryo assay (MEA) for detection of formaldehyde toxicity.
Design: Prospective in vitro study.
Setting: University hospital-based infertility center.
Background/aim: periodic measurement of plasma concentrations of cortisol precursors on a clinic visit may be of limited value in patients with congenital adrenal hyperplasia because it does not reflect a patient's circadian patterns of adrenal steroid secretion. Steroid profiling in dried blood spots (DBS) may allow for more frequent and sensitive monitoring.
Methods: we compared the agreement between 17α-hydroxyprogesterone (17-OHP) and androstenedione (D4A) levels determined from DBS samples and concurrently collected serum samples.
Curr Protoc Hum Genet
July 2007
Many congenital disorders of glycosylation (CDG) can be diagnosed by observing the extent of glycosylation of the abundant serum glycoprotein transferrin (Trf). Trf is an N-glycosylated protein with two asparagine glycation sites. CDG types I are those genetic defects which occur prior to transfer of the complex oligosaccharide to the acceptor asparagine in the cotranslated polypeptide chain.
View Article and Find Full Text PDFBackground: Newborn screening for maple syrup urine disease (MSUD) relies on finding increased concentrations of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine by tandem mass spectrometry (MS/MS). d-Alloisoleucine (allo-Ile) is the only pathognomonic marker of MSUD, but it cannot be identified by existing screening methods because it is not differentiated from isobaric amino acids. Furthermore, newborns receiving total parenteral nutrition often have increased concentrations of BCAAs.
View Article and Find Full Text PDFCongenital adrenal hyperplasia (CAH) is primarily caused by 21-hydroxylase deficiency and leads to an accumulation of 17-hydroxyprogesterone and reduced cortisol levels. Newborn screening for CAH is traditionally based on measuring 17-hydroxyprogesterone by different immunoassays. Despite attempts to adjust cutoff levels for birth weight, gestational age, and stress factors, the positive predictive value for CAH screening remains less than 1%.
View Article and Find Full Text PDFBackground: Newborn screening for congenital adrenal hyperplasia (CAH) involves measurement of 17alpha-hydroxyprogesterone (17-OHP), usually by immunoassay. Because this testing has been characterized by high false-positive rates, we developed a steroid profiling method that uses liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure 17-OHP, androstenedione, and cortisol simultaneously in blood spots.
Methods: Whole blood was eluted from a 4.