IEEE Trans Ultrason Ferroelectr Freq Control
November 2020
This study demonstrates, in detail, the potential of using capacitive micromachined ultrasonic transducers (CMUTs) for acoustic angiography of the microvasculature. It is known that when ultrasound contrast agents (microbubbles) are excited with moderate acoustic pressure around their resonance (2-4 MHz), they produce higher order harmonics (greater than third harmonic) due to their nonlinear behavior. To date, the fundamental challenge has been the availability of a transducer that can generate the transmit signals to excite the microbubbles at low frequencies and, in the same cycle, confocally detect harmonics in the higher frequencies.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Temperature monitoring during high-intensity focused ultrasound (HIFU) application is necessary to ensure effective therapy while minimizing thermal damage to adjacent tissue. In this study, we demonstrate a noninvasive approach for temperature measurement during HIFU therapy based on photoacoustic imaging (PAI). Because of the dependence of photoacoustic (PA) signal amplitude on temperature of the source tissue and the linearity of the PAI system, changes in temperature will cause changes in PA image intensity.
View Article and Find Full Text PDF