The disruption of the synaptic connection between the sensory inner hair cells (IHCs) and the auditory nerve fiber terminals of the type I spiral ganglion neurons (SGN) has been observed early in several auditory pathologies (e.g., noise-induced or ototoxic drug-induced or age-related hearing loss).
View Article and Find Full Text PDFDominant optic atrophy (DOA) is one of the most prevalent forms of hereditary optic neuropathies and is mainly caused by heterozygous variants in OPA1, encoding a mitochondrial dynamin-related large GTPase. The clinical spectrum of DOA has been extended to a wide variety of syndromic presentations, called DOAplus, including deafness as the main secondary symptom associated to vision impairment. To date, the pathophysiological mechanisms underlying the deafness in DOA remain unknown.
View Article and Find Full Text PDFAutism spectrum disorder is discussed in the context of altered neural oscillations and imbalanced cortical excitation-inhibition of cortical origin. We studied here whether developmental changes in peripheral auditory processing, while preserving basic hearing function, lead to altered cortical oscillations. Local field potentials (LFPs) were recorded from auditory, visual, and prefrontal cortices and the hippocampus of Bdnf KO mice.
View Article and Find Full Text PDFAutosomal recessive mutation of HOXB1 and Hoxb1 causes sensorineural hearing loss in patients and mice, respectively, characterized by the presence of higher auditory thresholds; however, the origin of the defects along the auditory pathway is still unknown. In this study, we assessed whether the abnormal auditory threshold and malformation of the sensory auditory cells, the outer hair cells, described in Hoxb1null mutants depend on the absence of efferent motor innervation, or alternatively, is due to altered sensory auditory components. By using a whole series of conditional mutant mice, which inactivate Hoxb1 in either rhombomere 4-derived sensory cochlear neurons or efferent motor neurons, we found that the hearing phenotype is mainly reproduced when efferent motor neurons are specifically affected.
View Article and Find Full Text PDFWolfram syndrome (WS) is a rare neurodegenerative disorder encompassing diabetes mellitus, diabetes insipidus, optic atrophy, hearing loss (HL) as well as neurological disorders. None of the animal models of the pathology are presenting with an early onset HL, impeding the understanding of the role of Wolframin (WFS1), the protein responsible for WS, in the auditory pathway. We generated a knock-in mouse, the Wfs1 line, presenting a human mutation leading to severe deafness in affected individuals.
View Article and Find Full Text PDFResistance to thyroid hormone due to mutations in , which encodes the thyroid hormone receptor α (TRα1), shows variable clinical presentation. Mutations affecting TRβ1 and TRβ2 cause deafness in mice and have been associated with deafness in humans. To test whether TRα1 also affects hearing function, we used mice heterozygous for a frameshift mutation in that is similar to human mutations ( mice) and reduces tissue sensitivity to thyroid hormone.
View Article and Find Full Text PDFViral-mediated gene augmentation, silencing, or editing offers tremendous promise for the treatment of inherited and acquired deafness. Inner-ear gene therapies often require a safe, clinically useable and effective route of administration to target both ears, while avoiding damage to the delicate structures of the inner ear. Here, we examined the possibility of using a cisterna magna injection as a new cochlear local route for initiating binaural transduction by different serotypes of the adeno-associated virus (AAV2/8, AAV2/9, AAV2/Anc80L65).
View Article and Find Full Text PDFSound-level coding in the auditory nerve is achieved through the progressive recruitment of auditory nerve fibers (ANFs) that differ in threshold of activation and in the stimulus level at which the spike rate saturates. To investigate the functional state of the ANFs, the electrophysiological tests routinely used in clinics only capture the first action potentials firing in synchrony at the onset of the acoustic stimulation. Assessment of other properties (e.
View Article and Find Full Text PDFFront Cell Neurosci
December 2021
NMDA receptors (NMDARs) populate the complex between inner hair cell (IHC) and spiral ganglion neurons (SGNs) in the developing and mature cochlea. However, in the mature cochlea, activation of NMDARs is thought to mainly occur under pathological conditions such as excitotoxicity. Ototoxic drugs such as aspirin enable cochlear arachidonic-acid-sensitive NMDAR responses, and induced chronic tinnitus was blocked by local application of NMDAR antagonists into the cochlear fluids.
View Article and Find Full Text PDFRecent studies demonstrated that reversible continuous noise exposure may induce a temporary threshold shift (TTS) with a permanent degeneration of auditory nerve fibers, although hair cells remain intact. To probe the impact of TTS-inducing impulse noise exposure on hearing, CBA/J Mice were exposed to noise impulses with peak pressures of 145 dB SPL. We found that 30 min after exposure, the noise caused a mean elevation of ABR thresholds of ~30 dB and a reduction in DPOAE amplitude.
View Article and Find Full Text PDFDFNA25 is an autosomal-dominant and progressive form of human deafness caused by mutations in the SLC17A8 gene, which encodes the vesicular glutamate transporter type 3 (VGLUT3). To resolve the mechanisms underlying DFNA25, we studied phenotypes of mice harbouring the p.A221V mutation in humans (corresponding to p.
View Article and Find Full Text PDFIn France 58% of persons with hearing loss still do not wear hearing aids. Pure-tone audiometry is the traditional gold standard in assessment and screening of hearing impairment, but it requires the use of calibrated devices and soundproof booth. The antiphasic digits-in-noise (DIN) test does not require calibrated material and can run on a standard headset or earbuds connected to a smartphone or a computer.
View Article and Find Full Text PDFPeople are increasingly exposed to environmental noise through the cumulation of occupational and recreational activities, which is considered harmless to the auditory system, if the sound intensity remains <80 dB. However, recent evidence of noise-induced peripheral synaptic damage and central reorganizations in the auditory cortex, despite normal audiometry results, has cast doubt on the innocuousness of lifetime exposure to environmental noise. We addressed this issue by exposing adult rats to realistic and nontraumatic environmental noise, within the daily permissible noise exposure limit for humans (80 dB sound pressure level, 8 h/day) for between 3 and 18 months.
View Article and Find Full Text PDFPrevious work in animals with recovered hearing thresholds but permanent inner hair cell synapse loss after noise have suggested initial vulnerability of low spontaneous rate (SR) auditory nerve fibers (ANF). As these fibers have properties of response that facilitate robust sound coding in continuous noise backgrounds, their targeted loss would have important implications for function. To address the issue of relative ANF vulnerabilities after noise, we assessed cochlear physiologic and histologic consequences of temporary threshold shift-producing sound over-exposure in the gerbil, a species with well-characterized distributions of auditory neurons by SR category.
View Article and Find Full Text PDFThe apex or apical region of the cochlear spiral within the inner ear encodes for low-frequency sounds. The disposition of sensory hair cells on the organ of Corti is largely variable in the apical region of mammals, and it does not necessarily follow the typical three-row pattern of outer hair cells (OHCs). As most underwater noise sources contain low-frequency components, we expect to find most lesions in the apical region of the cochlea of toothed whales, in cases of permanent noise-induced hearing loss.
View Article and Find Full Text PDFPituitary adenylyl cyclase-activating polypeptide (PACAP) is a member of the vasoactive intestinal polypeptide (VIP)-the secretin-glucagon family of neuropeptides. They act through two classes of receptors: PACAP type 1 (PAC1) and type 2 (VPAC1 and VPAC2). Among their pleiotropic effects throughout the body, PACAP functions as neuromodulators and neuroprotectors, rescuing neurons from apoptosis, mostly through the PAC1 receptor.
View Article and Find Full Text PDFBackground: Age-related hearing loss (ARHL), also known as presbycusis, is the most common sensory impairment seen in elderly people. However, the cochlear aging process does not affect people uniformly, suggesting that both genetic and environmental (e.g.
View Article and Find Full Text PDFPrestin is an integral membrane motor protein located in outer hair cells of the mammalian cochlea. It is responsible for electromotility and required for cochlear amplification. Although prestin works in a cycle-by-cycle mode up to frequencies of at least 79 kHz, it is not known whether or not prestin is required for the extreme high frequencies used by echolocating species.
View Article and Find Full Text PDFOver the last decade, pioneering molecular gene therapy for inner-ear disorders have achieved experimental hearing improvements after a single local or systemic injection of adeno-associated, virus-derived vectors (rAAV for recombinant AAV) encoding an extra copy of a normal gene, or ribozymes used to modify a genome. These results hold promise for treating congenital or later-onset hearing loss resulting from monogenic disorders with gene therapy approaches in patients. In this review, we summarize the current state of rAAV-mediated inner-ear gene therapies including the choice of vectors and delivery routes, and discuss the prospects and obstacles for the future development of efficient clinical rAAV-mediated cochlear gene medicine therapy.
View Article and Find Full Text PDFAge-related hearing impairment (ARHI), also referred to as presbycusis, is the most common sensory impairment seen in the elderly. As our cochlea, the peripheral organ of hearing, ages, we tend to experience a decline in hearing and are at greater risk of cochlear sensory-neural cell degeneration and exacerbated age-related hearing impairments, e.g.
View Article and Find Full Text PDFVesicular glutamate transporters (VGLUT1-3) mediate the uptake of glutamate into synaptic vesicles. VGLUTs are pivotal actors of excitatory transmission and of almost all brain functions. Their implication in various pathologies has been clearly documented.
View Article and Find Full Text PDFIntroduction: Current literature does not provide strong evidence that remote programming of hearing aids is effective, despite its increasing use by audiologists. We tested speech perception outcomes, real-ear insertion gain, and changes in self-perceived hearing impairment after face-to-face and remote programming of hearing aids in a randomized multicentre, single-blind crossover study.
Methods: Adult experienced hearing aid users were enrolled during routine follow-up visits to audiology clinics.
Chronic subjective tinnitus is a widespread disorder. This perceptual anomaly is assumed to result from a dysbalance of excitatory and inhibitory mechanisms on different levels of the auditory pathways. However, the brain areas involved are still under discussion.
View Article and Find Full Text PDFIn our aging society, age-related hearing loss (ARHL) has become a major socioeconomic issue. Reactive oxygen species (ROS) may be one of the main causal factors of age-related cochlear cell degeneration. We examined whether ROS-induced DNA damage response drives cochlear cell senescence and contributes to ARHL from the cellular up to the system level.
View Article and Find Full Text PDFDuring development, the sensory cells of the cochlea, the inner hair cells (IHCs), fire spontaneous calcium action potentials. This activity at the pre-hearing stage allows the IHCs to autonomously excite the auditory nerve fibers and hence, represents an efficient mechanism to shape the tonotopic organization along the ascending auditory pathway. Using calcium imaging, we show that the activity in the developing cochlea consists of calcium waves that propagate across the supporting and sensory cells.
View Article and Find Full Text PDF