Bottom-up growth offers precise control over the structure and geometry of semiconductor nanowires (NWs), enabling a wide range of possible shapes and seamless heterostructures for applications in nanophotonics and electronics. The most common vapor-liquid-solid (VLS) growth method features a complex interaction between the liquid metal catalyst droplet and the anisotropic structure of the crystalline NW, and the growth is mainly orchestrated by the triple-phase line (TPL). Despite the intrinsic mismatch between the droplet and the NW symmetries, its discussion has been largely avoided because of its complexity, which has led to the situation when multiple observed phenomena such as NW axial asymmetry or the oscillating truncation at the TPL still lack detailed explanation.
View Article and Find Full Text PDFThe growth of transition-metal dichalcogenides (TMDCs) has been performed so far using most established thin-film growth techniques (e.g., vapor phase transport, chemical vapor deposition, molecular beam epitaxy, etc.
View Article and Find Full Text PDFWe report silicon nanowire (SiNW) growth with a novel Cu-In bimetallic catalyst using a plasma-enhanced chemical vapor deposition (PECVD) method. We study the structure of the catalyst nanoparticles (NPs) throughout a two-step process that includes a hydrogen plasma pre-treatment at 200 °C and the SiNW growth itself in a hydrogen-silane plasma at 420 °C. We show that the H-plasma induces a coalescence of the Cu-rich cores of as-deposited thermally evaporated NPs that does not occur when the same annealing is applied without plasma.
View Article and Find Full Text PDFParallel nanomaterials possess unique properties and show potential applications in industry. Whereas, vertically aligned 2D nanomaterials have plane orientations that are generally chaotic. Simultaneous control of their growth direction and spatial orientation for parallel nanosheets remains a big challenge.
View Article and Find Full Text PDFSample preparation on cryo-EM grids can give various results, from very thin ice and homogeneous particle distribution (ideal case) to unwanted behavior such as particles around the "holes" or complexes that do not entirely correspond to the one in solution (real life). We recently run into such a case and finally found out that variations in the 3D reconstructions were systematically correlated with the grid batches that were used. We report the use of several techniques to investigate the grids' characteristics, namely TEM, SEM, Auger spectroscopy and Infrared Interferometry.
View Article and Find Full Text PDFWe used in situ transmission electron microscopy (TEM) to observe the dynamic changes of Si nanowires under electron beam irradiation. We found evidence of structural evolutions under TEM observation due to a combination of electron beam and thermal effects. Two types of heating holders were used: a carbon membrane, and a silicon nitride membrane.
View Article and Find Full Text PDFIn and Sn are the type of catalysts which do not introduce deep level electrical defects within the bandgap of germanium (Ge). However, Ge nanowires produced using these catalysts usually have a large diameter, a tapered morphology, and mixed crystalline and amorphous phases. In this study, we show that plasma-assisted vapor-liquid-solid (PA-VLS) method can be used to synthesize Ge nanowires.
View Article and Find Full Text PDFWhen Si nanowires (NWs) have diameters below about 10 nm, their band gap increases as their diameter decreases; moreover, it can be direct if the material adopts the metastable diamond hexagonal structure. To prepare such wires, we have developed an original variant of the vapor-liquid-solid process based on the use of a bimetallic Cu-Sn catalyst in a plasma-enhanced chemical vapor deposition reactor, which allows us to prevent droplets from coalescing and favors the growth of a high density of NWs with a narrow diameter distribution. Controlling the deposited thickness of the catalyst materials at the sub-nanometer level allows us to get dense arrays (up to 6 × 10 cm) of very-small-diameter NWs of 6 nm on average (standard deviation of 1.
View Article and Find Full Text PDFActa Crystallogr A Found Adv
September 2021
Quasicrystals have special crystal structures with long-range order, but without translational symmetry. Unexpectedly, carousel-like successive flippings of groups of atoms inside the ∼2 nm decagonal structural subunits of the decagonal quasicrystal AlCrFeSi were directly observed using in situ high-temperature high-resolution transmission electron microscopy imaging. The observed directionally successive phason flips occur mainly clockwise and occasionally anticlockwise.
View Article and Find Full Text PDFHexagonal Si (2H polytype) has attracted great interest because of its unique physical properties and wide range of potential applications. For example, it might be used in heterojunctions based on hexagonal and cubic Si. Although hexagonal Si has been reported in Si nanowires, its existence is doubted because structural defects of diamond cubic Si can produce structural signals similar to those attributed to hexagonal Si.
View Article and Find Full Text PDFPhys Rev Lett
October 2018
Crystal growth often proceeds by atomic step flow. When the surface area available for growth is limited, the nucleation and progression of the steps can be affected. This issue is particularly relevant to the formation of nanocrystals.
View Article and Find Full Text PDFThe fabrication of arrays of silicon nanowires (Si NWs) with well-defined surface coverage using the vapor-liquid-solid process requires a good control of the density and size distribution for the metal catalyst. We report on a cost-effective bottom-up approach to produce Si NWs by a low-temperature deposition technology using plasma-enhanced chemical vapor deposition and tin dioxide (SnO) nanoparticles as the source of tin catalyst. This strategy offers a straightforward method to select specific particle sizes by conventional colloidal techniques, and to tune the surface coverage using a polyelectrolyte layer to efficiently immobilize the particles on the substrate by electrostatic grafting.
View Article and Find Full Text PDFWe present our systematic work on the in situ generation of In nanoparticles (NPs) from the reduction of ITO thin films by hydrogen (H) plasma exposure. In contrast to NP deposition from the vapor phase (i.e.
View Article and Find Full Text PDFSolar cells based on epitaxial silicon layers as the absorber attract increasing attention because of the potential cost reduction. In this work, we studied the influence of the deposition rate on the structural properties of epitaxial silicon layers produced by plasma-enhanced chemical vapor deposition (epi-PECVD) using silane as a precursor and hydrogen as a carrier gas. We found that the crystalline quality of epi-PECVD layers depends on their thickness and deposition rate.
View Article and Find Full Text PDFA comprehensive study of the silicon nanowire growth process has been carried out. Silicon nanowires were grown by plasma-assisted-vapor-solid method using tin as a catalyst. We have focused on the evolution of the silicon nanowire density, morphology, and crystallinity.
View Article and Find Full Text PDFThe integration of III-V semiconductors with silicon is a key issue for photonics, microelectronics and photovoltaics. With the standard approach, namely the epitaxial growth of III-V on silicon, thick and complex buffer layers are required to limit the crystalline defects caused by the interface polarity issues, the thermal expansion, and lattice mismatches. To overcome these problems, we have developed a reverse and innovative approach to combine III-V and silicon: the straightforward epitaxial growth of silicon on GaAs at low temperature by plasma enhanced CVD (PECVD).
View Article and Find Full Text PDFPost-growth transfer and high growth temperature are two major hurdles that research has to overcome to get graphene out of research laboratories. Here, using a plasma-enhanced chemical vapour deposition process, we demonstrate the large-area formation of continuous transparent graphene layers at temperatures as low as 450 °C. Our few-layer graphene grows at the interface between a pre-deposited 200 nm Ni catalytic film and an insulating glass substrate.
View Article and Find Full Text PDFThe synthesis of few-layered graphene is performed by ion implantation of carbon species in thin nickel films, followed by high temperature annealing and quenching. Although ion implantation enables a precise control of the carbon content and of the uniformity of the in-plane carbon concentration in the Ni films before annealing, we observe thickness non-uniformities in the synthesized graphene layers after high temperature annealing. These non-uniformities are probably induced by the heterogeneous distribution/topography of the graphene nucleation sites on the Ni surface.
View Article and Find Full Text PDF