Publications by authors named "Jean Luc Gourdine"

Estimating animal behaviour during heat stress (HS) is particularly insightful to monitor animal welfare but also to better understand how animals thermoregulate. The present study is a proof of concept combining computer vision to monitor animal behaviour, continuous monitoring of subcutaneous temperature and recording of ambient temperature, with the aim to study the link between behaviour and animal body temperature during HS. A total of 22 pigs were video-monitored from 8:00 to 18.

View Article and Find Full Text PDF

Background: Heat stress (HS) is an increasing threat for pig production with a wide range of impacts. When submitted to high temperatures, pigs will use a variety of strategies to alleviate the effect of HS. While systemic adaptations are well known, tissue-specific changes remain poorly understood.

View Article and Find Full Text PDF

Background: Feed restriction occurs frequently during pig growth, either due to economic reasons or stressful environmental conditions. Local breeds are suggested to have better tolerance to periods of feed restriction. However, the mechanisms underlying the response to feed restriction in different breeds is largely unknown.

View Article and Find Full Text PDF

Ingested soil may expose free-range animals to environmental pollutants. In pigs, soil ingestion is few described whereas their burrowing behaviour suggests that it could be high. Although highly productive pigs are generally reared indoor, free-range farming is increasing in view of ethical considerations for animal welfare and is a common practice for subsistence agriculture systems.

View Article and Find Full Text PDF

Heat stress affects pig metabolism, health and welfare, resulting in reduced growth and important economic losses. The present experiment aimed to evaluate the effects of two climatic environments [temperate (TEMP) vs. tropical humid (TROP)] on feeding behaviour in growing pigs.

View Article and Find Full Text PDF

Heat stress (HS) affects pig performance, health and welfare, resulting in a financial burden to the pig industry. Pigs have a limited number of functional sweat glands and their thermoregulatory mechanisms used to maintain body temperature, are challenged by HS to maintain body temperature. The genetic selection of genotypes tolerant to HS is a promising long-term (adaptation) option that could be combined with other measures at the production system level.

View Article and Find Full Text PDF

With global climate changes currently occurring, and particularly given the severe energy and food shortages occurring throughout tropical regions, agroecological (AE) systems are drawing renewed attention as an efficient alternative to intensive models of production, particularly unsuitable in regions of the world such as the Caribbean or Latin America. There is a pressing need to focus on livestock farming systems (LFS) and characterize their potential contributions to global sustainability. A multidisciplinary approach is needed to address these multiple and complex problems.

View Article and Find Full Text PDF

Heat stress affects pig health, welfare, and production, and thus the economic viability of the pig sector in many countries. Breeding for heat tolerance is a complex issue, increasingly important due to climate change and the development of pig production in tropical areas. Characterizing genetic determinism of heat tolerance would help building selection schemes dedicated to high performance in tropical areas.

View Article and Find Full Text PDF

The present study aimed at investigating the impact of heat challenges on gut microbiota composition in growing pigs and its relationship with pigs' performance and thermoregulation responses. From a total of 10 F1 sire families, 558 and 564 backcross Large White × Créole pigs were raised and phenotyped from 11 to 23 wk of age in temperate (TEMP) and in tropical (TROP) climates, respectively. In TEMP, all pigs were subjected to an acute heat challenge (3 wk at 29 °C) from 23 to 26 wk of age.

View Article and Find Full Text PDF

Reduction in feed intake is a common physiological response of growing pigs facing stressful environmental conditions. The present experiment aims to study (1) the effects of a short-term feed restriction and refeeding on pig performance and metabolism and (2) the differential response between two breeds, Large White (LW), which has been selected for high performance, and Creole (CR), which is adapted to tropical conditions. A trial of 36 castrated male pigs (18 LW and 18 CR) was carried out.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how heat stress affects pig farming and the need for new methods to predict pigs' resilience to heat stress.
  • It assesses the reliability of blood metabolome analysis from pigs raised in temperate and tropical regions to determine their sensitivity to chronic heat stress.
  • Results show that plasma metabolome profiles can accurately predict sensitivity to heat stress, achieving a prediction accuracy of 78% and demonstrating a strong correlation with a sensitivity index.
View Article and Find Full Text PDF

The main objectives of the present work were to test the effects of heat stress on blood rheology and to determine whether the responses can change according to the pig breeds. Thirty-six pigs from three pig's lines (n = 12 for each line) with assumed different tolerance to heat stress were compared: Large White (LW, little tolerance), Creole (CR, good tolerance) and LW × CR pigs (produced from a cross between LW and CR lines). In a first period, all pigs were exposed to a 9-d period of thermo-neutral environment (24°C; d-9 to d-1; P0).

View Article and Find Full Text PDF

Using a mechanistic model, we compared five alternative farming systems with the purpose of transforming monoculture (MON) banana farms into mixed farming systems (MFS) with ruminants feeding banana by-products (leaves, pseudostems and nonmarketable fruits) and forage from the fallow land. The paper presents the main structure of the model (land surface changes, available biomass for animals, stocking rates, productive or reproductive indicators), and impact assessment (change in farm productivity) is discussed. Five MFS with typical local ruminant production systems were used to compare MON to the strategies using forage from fallow and/or integrating Creole cattle (CC), Creole goats (CG) or Martinik sheep (MS) into banana farming.

View Article and Find Full Text PDF

We evaluated the effect of heat challenge on cell viability, concanavalin A-induced proliferation and heat shock protein (HSPs) mRNA expression in peripheral mononuclear blood cells (PBMC) isolated from Creole (CR) and Large White (LW) pigs. The PBMCs were cultured for 9 h at 37 °C before being subjected to heat challenge: (1) at 42 °C or 45 °C for 2, 4, 6 and 9 h to monitor cell viability;(2) at 45 °C for 2 and 9 h followed by stimulation for 24 h at 37 °C with concanavalin A to evaluate mitogen-induced proliferation; and (3) at 45 °C for 3, 6 and 9 h to measure induction of HSP70.2 and HSP90 mRNA.

View Article and Find Full Text PDF