Publications by authors named "Jean Liao"

Poor hygiene and improper food preparation practices in consumers' homes have previously been demonstrated as contributing to foodborne diseases. To address potential cross-contamination by kitchen utensils in the home, a series of studies was conducted to determine the extent to which the use of a knife or grater on fresh produce would lead to the utensil's contamination with Escherichia coli O157:H7 or Salmonella enterica. When shredding inoculated carrots (ca.

View Article and Find Full Text PDF

Consumers are being advised to increase their consumption of fruits and vegetables to reduce their risk of chronic disease. However, to achieve that goal, consumers must be able to implement protocols in their kitchens to reduce their risk of consuming contaminated produce. To address this issue, a study was conducted to monitor the fate of Escherichia coli O157:H7 and Salmonella on produce (cantaloupe, honeydew melon, carrots, and celery) that were subjected to brushing or peeling using common kitchen utensils.

View Article and Find Full Text PDF

Two separate studies were conducted to address the condition and the type of feedstocks used during composting of dairy manure. In each study, physical (temperature), chemical (ammonia, volatile acids, and pH), and biological (Salmonella, Listeria monocytogenes, and Escherichia coli O157:H7) parameters were monitored during composting in bioreactors to assess the degree to which they were affected by the experimental variables and, ultimately, the ability of the chemical and physical parameters to predict the fate of pathogens during composting. Compost mixtures that contained either aged dairy manure or pine needles had reduced heat generation; therefore, pathogen reduction took longer than if fresh manure or carbon amendments of wheat straw or peanut hulls were used.

View Article and Find Full Text PDF

Background: The survival and distribution of enteric pathogens in soil and lettuce systems were investigated in response to several practices (soil amendment supplementation and reduced watering) that could be applied by home gardeners.

Results: Leaf lettuce was grown in manure compost/top soil (0:5, 1:5 or 2:5 w/w) mixtures. Escherichia coli O157:H7 or Salmonella was applied at a low or high dose (10(3) or 10(6) colony-forming units (CFU) mL(-1) ) to the soil of seedlings and mid-age plants.

View Article and Find Full Text PDF

Environmental pests may serve as reservoirs and vectors of zoonotic pathogens to leafy greens; however, it is unknown whether insect pests feeding on plant tissues could redistribute these pathogens present on the surface of leaves to internal sites. This study sought to differentiate the degree of tissue internalization of Escherichia coli O157:H7 when applied at different populations on the surface of lettuce and spinach leaves, and to ascertain whether lettuce-infesting insects or physical injury could influence the fate of either surface or internalized populations of this enteric pathogen. No internalization of E.

View Article and Find Full Text PDF

Numerous field studies have revealed that irrigation water can contaminate the surface of plants; however, the occurrence of pathogen internalization is unclear. This study was conducted to determine the sites of Escherichia coli O157:H7 contamination and its survival when the bacteria were applied through spray irrigation water to either field-grown spinach or lettuce. To differentiate internalized and surface populations, leaves were treated with a surface disinfectant wash before the tissue was ground for analysis of E.

View Article and Find Full Text PDF

Several sources of contamination of fresh produce by Escherichia coli O157:H7 (O157) have been identified and include contaminated irrigation water and improperly composted animal waste; however, field studies evaluating the potential for internalization of O157 into leafy greens from these sources have not been conducted. Irrigation water inoculated with green fluorescent plasmid-labeled Shiga toxin-negative strains (50 ml of 10(2), 10(4), or 10(6) CFU of O157 per ml) was applied to soil at the base of spinach plants of different maturities in one field trial. In a second trial, contaminated compost (1.

View Article and Find Full Text PDF

The fate of manure-borne pathogen surrogates (gfp-labeled Escherichia coli O157:H7 and Listeria innocua and avirulent Salmonella Typhimurium) in the field was monitored at both sub-surface (30 cm from surface) and surface sites of static composting piles (3.5-m base diameter) composed of chicken litter and peanut hulls. Despite exposure to elevated temperatures, Salmonella was detected by enrichment culture in sub-surface samples following 14 days of composting.

View Article and Find Full Text PDF

Aerobic composting is a common management practice to inactivate pathogens in manure; however, additional research on the role of compost composition in pathogen inactivation is needed. The objective of this study was therefore to determine the effect of the carbon:nitrogen (C:N) ratio and the presence of ammonium sulfate on inactivation of Salmonella spp. in cow manure-based mixtures composted in a bioreactor under controlled conditions.

View Article and Find Full Text PDF

Green fluorescent protein-labeled Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis were inoculated at 10(7) CFU/g into cow, hog, or chicken manure. Ten- or 11-day-old soldier fly larvae (Hermetia illucens L.) (7 to 10 g) were added to the manure and held at 23, 27, or 32 degrees C for 3 to 6 days.

View Article and Find Full Text PDF