Publications by authors named "Jean L J M Scheijen"

Diabetes and other age-related diseases are associated with an increased risk of cognitive impairment, but the underlying mechanisms remain poorly understood. Methylglyoxal (MGO), a by-product of glycolysis and a major precursor in the formation of advanced glycation end-products (AGEs), is increased in individuals with diabetes and other age-related diseases and is associated with microvascular dysfunction. We now investigated whether increased levels of circulating MGO can lead to cerebral microvascular dysfunction, blood-brain barrier (BBB) dysfunction, and cognitive impairment.

View Article and Find Full Text PDF

Diabetes is associated with cognitive impairment, but the underlying mechanism remains unclear. Methylglyoxal (MGO), a precursor to advanced glycation endproducts (AGEs), is elevated in diabetes and linked to microvascular dysfunction. In this study, overexpression of the MGO-detoxifying enzyme glyoxalase 1 (Glo1) was used in a mouse model of diabetes to explore whether MGO accumulation in diabetes causes cognitive impairment.

View Article and Find Full Text PDF

Context: Glucose excursions in persons with diabetes may drive chronic inflammation. Methylglyoxal (MGO) is formed from glucose, is elevated in persons with diabetes, and is a potent glycating agent linked with inflammation.

Objective: We investigated whether glucose excursions are associated with low-grade inflammation and whether MGO mediates this association.

View Article and Find Full Text PDF

Background: Preeclampsia is a multifaceted syndrome that includes maternal vascular dysfunction. We hypothesize that increased placental glycolysis and hypoxia in preeclampsia lead to increased levels of methylglyoxal (MGO), consequently causing vascular dysfunction.

Methods: Plasma samples and placentas were collected from uncomplicated and preeclampsia pregnancies.

View Article and Find Full Text PDF

Reactive α-dicarbonyls (α-DCs), such as methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), are potent precursors in the formation of advanced glycation end products (AGEs). In particular, MGO and MGO-derived AGEs are thought to be involved in the development of vascular complications in diabetes. Experimental studies showed that citrus and pomegranate polyphenols can scavenge α-DCs.

View Article and Find Full Text PDF

Background And Objective: Previous experimental studies have shown that fructose interacts with glucose metabolism by increasing hepatic glucose uptake. However, human studies investigating the effects of small ('catalytic') amounts of fructose, added to an oral glucose load, on plasma glucose levels remain inconclusive. The aim of this study, therefore, was to repeat and extend these previous studies by examining the plasma glucose response during a 75 g oral glucose tolerance test (OGTT) with the addition of different doses of fructose.

View Article and Find Full Text PDF

The dicarbonyl compound methylglyoxal (MGO) is a major precursor in the formation of advanced glycation endproducts (AGEs). MGO and AGEs are increased in subjects with diabetes and are associated with fatal and nonfatal cardiovascular disease. Previously, we have shown that plasma MGO concentrations rapidly increase in the postprandial phase, with a higher increase in individuals with type 2 diabetes.

View Article and Find Full Text PDF

Aim: To investigate the effects of pyridoxamine (PM), a B6 vitamer and dicarbonyl scavenger, on glycation and a large panel of metabolic and vascular measurements in a randomized double-blind placebo-controlled trial in abdominally obese individuals.

Materials And Methods: Individuals (54% female; mean age 50 years; mean body mass index 32 kg/m ) were randomized to an 8-week intervention with either placebo (n = 36), 25 mg PM (n = 36) or 200 mg PM (n = 36). We assessed insulin sensitivity, β-cell function, insulin-mediated microvascular recruitment, skin microvascular function, flow-mediated dilation, and plasma inflammation and endothelial function markers.

View Article and Find Full Text PDF

A Western diet comprises high levels of dicarbonyls and advanced glycation endproducts (AGEs), which may contribute to flares and symptoms in inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). We therefore investigated the intake of dietary dicarbonyls and AGEs in IBD and IBS patients as part of the habitual diet, and their association with intestinal inflammation. Food frequency questionnaires from 238 IBD, 261 IBS as well as 195 healthy control (HC) subjects were used to calculate the intake of dicarbonyls methylglyoxal, glyoxal, and 3-deoxyglucosone, and of the AGEs Nε-(carboxymethyl)lysine, Nε-(1-carboxyethyl)lysine and methylglyoxal-derived hydroimidazolone-1.

View Article and Find Full Text PDF

α-Dicarbonyls and advanced glycation end products (AGEs) may contribute to the pathogenesis of insulin resistance by a variety of mechanisms. To investigate whether young insulin-resistant subjects present markers of increased dicarbonyl stress, we determined serum α-dicarbonyls-methylglyoxal, glyoxal, 3-deoxyglucosone; their derived free- and protein-bound, and urinary AGEs using the UPLC/MS-MS method; soluble receptors for AGEs (sRAGE), and cardiometabolic risk markers in 142 (49% females) insulin resistant (Quantitative Insulin Sensitivity Check Index (QUICKI) ≤ 0.319) and 167 (47% females) age-, and waist-to-height ratio-matched insulin-sensitive controls aged 16-to-22 years.

View Article and Find Full Text PDF

Dietary advanced glycation endproducts (AGEs), abundantly present in Westernized diets, are linked to negative health outcomes, but their impact on the gut microbiota has not yet been well investigated in humans. We investigated the effects of a 4-week isocaloric and macronutrient-matched diet low or high in AGEs on the gut microbial composition of 70 abdominally obese individuals in a double-blind parallel-design randomized controlled trial (NCT03866343). Additionally, we investigated the cross-sectional associations between the habitual intake of dietary dicarbonyls, reactive precursors to AGEs, and the gut microbial composition, as assessed by 16S rRNA amplicon-based sequencing.

View Article and Find Full Text PDF

Background: Dicarbonyls are highly reactive compounds and major precursors of advanced glycation end products (AGEs). Both dicarbonyls and AGEs are associated with development of age-related diseases. Dicarbonyls are formed endogenously but also during food processing.

View Article and Find Full Text PDF

Advanced glycation endproducts (AGEs) are involved in several diseases, including NAFLD and NASH. RAGE is the main receptor mediating the pro-inflammatory signalling induced by AGEs. Therefore, targeting of RAGE has been proposed for prevention of chronic inflammatory diseases.

View Article and Find Full Text PDF

Scope: Dietary advanced glycation endproducts (AGEs) are associated with negative biological effects, possibly due to accumulation in plasma and tissues and through modulation of inflammation and gut microbiota. Whether these biological consequences are reversible by limiting dietary AGE intake is unknown.

Methods And Results: Young healthy C57BL/6 mice were fed a standard chow (n = 10) or a baked chow high AGE-diet (n = 10) (~1.

View Article and Find Full Text PDF

Background And Aims: Vitamin B6 is involved in a large spectrum of physiological processes and comprises of the vitamers pyridoxamine (PM), pyridoxal (PL), pyridoxine (PN), and their phosphorylated derivatives including the biological active pyridoxal 5'-phosphate (PLP). While PN toxicity is known to complicate several treatments, PM has shown promise in relation to the treatment of metabolic and age-related diseases by blocking oxidative degradation and scavenging toxic dicarbonyl compounds and reactive oxygen species. We aimed to assess the metabolization of oral PM supplements in a single and three daily dose.

View Article and Find Full Text PDF

Aims: Dicarbonyl compounds contribute to the formation of advanced glycation endproducts (AGEs) and the development of insulin resistance and vascular complications. Dicarbonyl stress may already be detrimental in obesity. We evaluated whether diet-induced weight loss can effectively reverse dicarbonyl stress in abdominally obese men.

View Article and Find Full Text PDF

Aims: Non-invasively assessed skin autofluorescence (SAF) measures advanced glycation endproducts (AGEs) in the dermis. SAF correlates with dermal AGEs in Caucasians and Asians, but studies in dark-skinned subjects are lacking. In this pilot we aimed to assess whether SAF signal is representative of intrinsic fluorescence (IF) and AGE accumulation in dark skin.

View Article and Find Full Text PDF

Dicarbonyls are reactive precursors of advanced glycation endproducts. They are formed endogenously and during food processing. Currently, a comprehensive database on dicarbonyls in foods that covers the entire range of food groups is lacking, limiting knowledge about the amount of dicarbonyls that is ingested via food.

View Article and Find Full Text PDF

Objective: Diabetes is a risk factor for severe limb ischemia (SLI), a condition associated with high mortality, morbidity, and limb loss. The reactive glucose-derived dicarbonyl methylglyoxal (MGO) is a major precursor for advanced glycation end products (AGEs) and a potential driver of cardiovascular disease. We investigated whether plasma MGO levels are associated with poor outcomes in SLI.

View Article and Find Full Text PDF

Background: The study of the involvement of fructose in the pathogenesis of cardiometabolic disease requires accurate and precise measurements of serum and urinary fructose. The aim of the present study was to develop and validate such a method by Ultra Performance Liquid Chromatography-tandem Mass Spectrometry (UPLC-MS/MS).

Methods: Fructose was quantified using hydrophilic interaction UPLC-MS/MS with a labelled internal standard.

View Article and Find Full Text PDF

Background: Advanced glycation end products (AGEs) are protein modifications that are predominantly formed from dicarbonyl compounds that arise from glucose and lipid metabolism. AGEs and sedentary behavior have been identified as a driver of accelerated (vascular) aging. The effect of physical activity on AGE accumulation is unknown.

View Article and Find Full Text PDF

Tendon pathology (tendinopathy) typically occurs in specific regions of a tendon, and growth in response to exercise also appears to be more pronounced in specific regions. In a previous study in animals we found evidence of regional differences in tendon turnover, but whether the turnover of human patellar tendon differs in different regions still remains unknown. Patellar tendons were obtained from cadavers of healthy men and women (body donation program, = 5 donors, >60 yr of age).

View Article and Find Full Text PDF

Background: End-stage renal disease (ESRD) is strongly associated with cardiovascular disease (CVD) risk. Advanced glycation endproducts (AGEs) and dicarbonyls, major precursors of AGEs, may contribute to the pathophysiology of CVD in ESRD. However, detailed data on the courses of AGEs and dicarbonyls during the transition of ESRD patients to renal replacement therapy are lacking.

View Article and Find Full Text PDF