Publications by authors named "Jean Ju Chung"

Article Synopsis
  • Fertilization marks the beginning of life, but how sperm binds to and fuses with an egg is not fully understood.* -
  • A recent study has provided important new information about the complex mechanisms involved in sperm-egg interactions.* -
  • These findings reveal not only the molecular details but also the evolutionary importance of this fundamental process.*
View Article and Find Full Text PDF
Article Synopsis
  • The CatSper channel is crucial for sperm fertility as it regulates calcium signaling necessary for sperm movement.
  • CATSPERε, a specific subunit of this channel, is vital for assembling the entire CatSper complex and enabling sperm hyperactivation.
  • Mice lacking CATSPERε are sterile due to defective sperm, highlighting the importance of this subunit in fertility and potential therapeutic targets.
View Article and Find Full Text PDF

Desmosterol and cholesterol are essential lipid components of the sperm plasma membrane. Cholesterol efflux is required for capacitation, a process through which sperm acquire fertilizing ability. In this study, using a transgenic mouse model overexpressing 24-dehydrocholesterol reductase (DHCR24), an enzyme in the sterol biosynthesis pathway responsible for the conversion of desmosterol to cholesterol, we show that disruption of sterol homeostasis during spermatogenesis led to defective sperm morphology characterized by incomplete mitochondrial packing in the midpiece, reduced sperm count and motility, and a decline in male fertility with increasing paternal age, without changes in body fat composition.

View Article and Find Full Text PDF

Radial spokes (RS) are T-shaped multiprotein complexes on the axonemal microtubules. Repeated RS1, RS2, and RS3 couple the central pair to modulate ciliary and flagellar motility. Despite the cell type specificity of RS3 substructures, their molecular components remain largely unknown.

View Article and Find Full Text PDF

Calcium signaling is critical for successful fertilization. In spermatozoa, calcium influx into the sperm flagella mediated by the sperm-specific CatSper calcium channel is necessary for hyperactivated motility and male fertility. CatSper is a macromolecular complex and is repeatedly arranged in zigzag rows within four linear nanodomains along the sperm flagella.

View Article and Find Full Text PDF

Calcium signaling is critical for successful fertilization. In spermatozoa, calcium influx into the sperm flagella mediated by the sperm specific CatSper calcium channel is necessary for hyperactivated motility and male fertility. CatSper is a macromolecular complex and is repeatedly arranged in zigzag rows within four linear nanodomains along the sperm flagella.

View Article and Find Full Text PDF

Radial spokes (RS) are T-shaped multiprotein complexes on the axonemal microtubules. Repeated RS1, RS2, and RS3 couple the central pair to modulate ciliary and flagellar motility. Despite the cell type specificity of RS3 substructures, their molecular components remain largely unknown.

View Article and Find Full Text PDF

The flagellar-specific Ca channel CatSper is the predominant Ca entry site in mammalian sperm. CatSper-mediated Ca signaling affects nearly every event that regulates sperm to acquire fertilizing capability. In this review, we summarize some of the main findings from 20 years of CatSper research and highlight recent progress and prospects.

View Article and Find Full Text PDF

Argonaute 2 (AGO2) is a ubiquitously expressed protein critical for regulation of mRNA translation and vital to animal development. AGO2 protein is found in both cytoplasmic and nuclear compartments, and although its cytoplasmic role is well studied, the biological relevance of nuclear AGO2 is unclear. Here, we address this problem in vivo using spermatogenic cells as a model.

View Article and Find Full Text PDF

Thioredoxin/glutathione reductase (TXNRD3) is a selenoprotein composed of thioredoxin reductase and glutaredoxin domains. This NADPH-dependent thiol oxidoreductase evolved through gene duplication within the Txnrd family, is expressed in the testes, and can reduce both thioredoxin and glutathione in vitro; however, the function of this enzyme remains unknown. To characterize the function of TXNRD3 in vivo, we generated a strain of mice bearing deletion of Txnrd3 gene.

View Article and Find Full Text PDF

The sperm calcium channel CatSper plays a central role in successful fertilization as a primary Ca gateway. Here, we applied cryo-electron tomography to visualize the higher-order organization of the native CatSper complex in intact mammalian sperm. The repeating CatSper units form long zigzag-rows along mouse and human sperm flagella.

View Article and Find Full Text PDF

During epididymal transit, redox remodeling protects mammalian spermatozoa, preparing them for survival in the subsequent journey to fertilization. However, molecular mechanisms of redox regulation in sperm development and maturation remain largely elusive. In this study, we report that thioredoxin-glutathione reductase (TXNRD3), a thioredoxin reductase family member particularly abundant in elongating spermatids at the site of mitochondrial sheath formation, regulates redox homeostasis to support male fertility.

View Article and Find Full Text PDF

Successful fertilization depends on sperm motility adaptation. Ejaculated and activated sperm beat symmetrically in high frequency, move linearly, and swim with clockwise chirality. After capacitation, sperm beat asymmetrically with lower amplitude and a high lateral head excursion.

View Article and Find Full Text PDF

In mammalian sperm cells, regulation of spatiotemporal Ca signaling relies on the quadrilinear Ca signaling nanodomains in the flagellar membrane. The sperm-specific, multi-subunit CatSper Ca channel, which is crucial for sperm hyperactivated motility and male fertility, organizes the nanodomains. Here, we report CatSperτ, the C2cd6-encoded membrane-associating C2 domain protein, can independently migrate to the flagella and serve as a major targeting component of the CatSper channel complex.

View Article and Find Full Text PDF

The lipid raft-resident protein, MAL2, has been implicated as contributing to the pathogenesis of several malignancies, including breast cancer, but the underlying mechanism for its effects on tumorigenesis is unknown. Here, we show that MAL2-mediated lipid raft formation leads to HER2 plasma membrane retention and enhanced HER2 signaling in breast cancer cells. We demonstrate physical interactions between HER2 and MAL2 in lipid rafts using proximity ligation assays.

View Article and Find Full Text PDF

Mammalian sperm cells are not capable of fertilizing an egg immediately after ejaculation; instead, they must gradually acquire the capacity to fertilize while they travel inside the female reproductive tract. Sperm cells are transported by the muscular activity of the myometrium to the utero-tubal junction (UTJ) before entering the oviduct where they undergo this physiological process, termed capacitation. Since the successful emulation of mammalian sperm capacitation , which led to the development of fertilization techniques, sperm capacitation and gamete interaction studies have been mostly carried out under conditions.

View Article and Find Full Text PDF

Asthenozoospermia accounts for over 80% of primary male infertility cases. Reduced sperm motility in asthenozoospermic patients are often accompanied by teratozoospermia, or defective sperm morphology, with varying severity. Multiple morphological abnormalities of the flagella (MMAF) is one of the most severe forms of asthenoteratozoospermia, characterized by heterogeneous flagellar abnormalities.

View Article and Find Full Text PDF

Males have evolved species-specifical sperm morphology and swimming patterns to adapt to different fertilization environments. In eutherians, only a small fraction of the sperm overcome the diverse obstacles in the female reproductive tract and successfully migrate to the fertilizing site. Sperm arriving at the fertilizing site show hyperactivated motility, a unique motility pattern displaying asymmetric beating of sperm flagella with increased amplitude.

View Article and Find Full Text PDF

Mammalian sperm cells must respond to cues originating from along the female reproductive tract and from the layers of the egg in order to complete their fertilization journey. Dynamic regulation of ion signalling is, therefore, essential for sperm cells to adapt to their constantly changing environment. Over the past 15 years, direct electrophysiological recordings together with genetically modified mouse models and human genetics have confirmed the importance of ion channels, including the principal Ca-selective plasma membrane ion channel CatSper, for sperm activity.

View Article and Find Full Text PDF

Out of millions of ejaculated sperm, a few reach the fertilization site in mammals. Flagellar Ca signaling nanodomains, organized by multi-subunit CatSper calcium channel complexes, are pivotal for sperm migration in the female tract, implicating CatSper-dependent mechanisms in sperm selection. Here using biochemical and pharmacological studies, we demonstrate that CatSper1 is an O-linked glycosylated protein, undergoing capacitation-induced processing dependent on Ca and phosphorylation cascades.

View Article and Find Full Text PDF

An automated high-throughput platform can screen for molecules that change the motility of sperm cells and their ability to fertilize.

View Article and Find Full Text PDF

Varying pH of luminal fluid along the female reproductive tract is a physiological cue that modulates sperm motility. CatSper is a sperm-specific, pH-sensitive calcium channel essential for hyperactivated motility and male fertility. Multi-subunit CatSper channel complexes organize linear Ca signaling nanodomains along the sperm tail.

View Article and Find Full Text PDF

Interspecies fertilization is rare, partly due to species separation enforced at the molecular level. In this issue, Raj et al. now reveal the crystal structures of mollusk egg coat protein, VERL, complexed with cognate sperm protein lysin.

View Article and Find Full Text PDF

We report that the () and () genes encode novel subunits of a 9-subunit CatSper ion channel complex. Targeted disruption of reduces CatSper current and sperm rheotactic efficiency in mice, resulting in severe male subfertility. Normally distributed in linear quadrilateral nanodomains along the flagellum, the complex lacking CatSperζ is disrupted at ~0.

View Article and Find Full Text PDF