Publications by authors named "Jean Jordan-Sweet"

In recent times the chiral semimetal cobalt monosilicide (CoSi) has emerged as a prototypical, nearly ideal topological conductor hosting giant, topologically protected Fermi arcs. Exotic topological quantum properties have already been identified in CoSi bulk single crystals. However, CoSi is also known for being prone to intrinsic disorder and inhomogeneities, which, despite topological protection, risk jeopardizing its topological transport features.

View Article and Find Full Text PDF

Solution processing of polycrystalline compound semiconductor thin film using nanocrystals as a precursor is considered one of the most promising and economically viable routes for future large-area manufacturing. However, in polycrystalline compound semiconductor films such as CuZnSnS (CZTS), grain size, and the respective grain boundaries play a key role in dictating the optoelectronic properties. Various strategies have been employed previously in tailoring the grain size and boundaries (such as ligand exchange) but most require postdeposition thermal annealing at high temperature in the presence of grain growth directing agents (selenium or sulfur vapor with/without Na, K, etc.

View Article and Find Full Text PDF

Epitaxial growth of SrTiO₃ on silicon by molecular beam epitaxy has opened up the route to the integration of functional complex oxides on a silicon platform. Chief among them is ferroelectric functionality using perovskite oxides such as BaTiO₃. However, it has remained a challenge to achieve ferroelectricity in epitaxial BaTiO₃ films with a polarization pointing perpendicular to the silicon substrate without a conducting bottom electrode.

View Article and Find Full Text PDF

Chalcogenide films with reversible amorphous-crystalline phase transitions have been commercialized as optically rewritable data-storage media, and intensive effort is now focused on integrating them into electrically addressed non-volatile memory devices (phase-change random-access memory or PCRAM). Although optical data storage is accomplished by laser-induced heating of continuous films, electronic memory requires integration of discrete nanoscale phase-change material features with read/write electronics. Currently, phase-change films are most commonly deposited by sputter deposition, and patterned by conventional lithography.

View Article and Find Full Text PDF