In the aim of designing and developing a novel saponin-based adjuvant system, we combined the QS21 saponin with low microgram amounts of the fully synthetic TLR4 agonist, E6020, in cholesterol-containing liposomes. The resulting adjuvant system, termed SPA14, appeared as a long-term stable and homogeneous suspension of mostly unilamellar and a few multilamellar vesicles, with an average hydrodynamic diameter of 93 nm, when formulated in citrate buffer at pH 6.0-6.
View Article and Find Full Text PDFThe characterization of vaccine distribution to relevant tissues after in vivo administration is critical to understanding their mechanisms of action. Vaccines based on mRNA lipid nanoparticles (LNPs) are now being widely considered against infectious diseases and cancer. Here, we used in vivo imaging approaches to compare the trafficking of two LNP formulations encapsulating mRNA following intramuscular administration: DLin-MC3-DMA (MC3) and the recently developed DOG-IM4.
View Article and Find Full Text PDFThe use of modified nucleosides is an important approach to mitigate the intrinsic immunostimulatory activity of exogenous mRNA and to increase its translation for mRNA therapeutic applications. However, for vaccine applications, the intrinsic immunostimulatory nature of unmodified mRNA could help induce productive immunity. Additionally, the ionizable lipid nanoparticles (LNPs) used to deliver mRNA vaccines can possess immunostimulatory properties that may influence the impact of nucleoside modification.
View Article and Find Full Text PDFA full nonclinical safety package was performed to support the clinical use of SPA14, a novel liposome-based vaccine adjuvant containing the synthetic toll-like receptor 4 agonist E6020 and saponin QS21. E6020 and QS21 were tested negative for their potential genotoxic effects in Ames, micronucleus, or mouse-lymphoma TK (thymidine kinase) assay. To evaluate the potential local and systemic effects of SPA14, two toxicity studies were performed in rabbits.
View Article and Find Full Text PDFSPA09 is a polyacrylate-based clinical stage vaccine adjuvant that was found to exert a strong adjuvant effect on various vaccine antigens including recombinant cytomegalovirus glycoprotein B (CMV-gB). For the characterization of antigen-adjuvant interactions, which is a regulatory requirement and an important piece of information for the understanding of adjuvant mechanism of action, we developed a set of orthogonal techniques, comprising thermal analyses, biolayer interferometry and agarose gel migration assays. Here we apply these techniques to study the interaction between SPA09 and two recombinant proteins from the Sanofi new vaccine portfolio, CMV-gB and the chaperone protein, PrsA, that we used as model antigens.
View Article and Find Full Text PDFThe mRNA vaccine technology has promising applications to fight infectious diseases as demonstrated by the licensing of two mRNA-based vaccines, Comirnaty® (Pfizer/BioNtech) and Spikevax® (Moderna), in the context of the Covid-19 crisis. Safe and effective delivery systems are essential to the performance of these vaccines and lipid nanoparticles (LNPs) able to entrap, protect and deliver the mRNA in vivo are considered by many as the current "best in class". Nevertheless, current mRNA/LNP vaccine technology has still some limitations, one of them being thermostability, as evidenced by the ultracold distribution chain required for the licensed vaccines.
View Article and Find Full Text PDFAdjuvants are central to the efficacy of subunit vaccines. Although several new adjuvants have been approved in human vaccines over the last decade, the panel of adjuvants in licensed human vaccines remains small. There is still a need for novel adjuvants that can be safely used in humans, easy to source and to formulate with a wide range of antigens and would be broadly applicable to a wide range of vaccines.
View Article and Find Full Text PDFA structure-activity study was conducted to identify the structural characteristics underlying the adjuvant activity of straight ( non-crosslinked) polyacrylate polymers (PAAs) in order to select a new PAA adjuvant candidate for future clinical development. The study revealed that the adjuvant effect of PAA was mainly influenced by polymer size (Mw) and dose. Maximal effects were obtained with large PAAs above 350 kDa and doses above 100 μg in mice.
View Article and Find Full Text PDFSeasonal influenza vaccines represent a positive intervention to limit the spread of the virus and protect public health. Yet continual influenza evolution and its ability to evade immunity pose a constant threat. For these reasons, vaccines with improved potency and breadth of protection remain an important need.
View Article and Find Full Text PDFEmulsion adjuvants for human vaccines have evolved gradually over the last century. Current formulations are the result of many refinements to their composition and manufacturing, as well as optimization for safety and efficacy. Squalene has emerged as being particularly suitable for the manufacturing of safe oil-in-water (O/W) adjuvants for parenteral applications due to its biocompatibility and ability to be metabolized.
View Article and Find Full Text PDFWe describe the development, analytical characterization, stability and preclinical efficacy of AF04, a combination adjuvant comprising the synthetic toll-like receptor 4 (TLR4) agonist, E6020, formulated in AF03, a thermoreversible squalene emulsion. By using AF04 with the recombinant major outer membrane protein of Chlamydia trachomatis (Ct-MOMP) and with the recombinant surface glycoprotein gB from human cytomegalovirus (CMV-gB) as model antigens, we show that AF03 and E6020 can synergize to augment specific antibody and Th-1 cellular immune responses in mice. In terms of formulation, we observe that the method used to incorporate E6020 into AF03 affects its partition between the oil and water phases of the emulsion which in turn has a significant impact on the tolerability (IV pyrogenicity test in rabbits) of this novel adjuvant combination.
View Article and Find Full Text PDFExpert Rev Vaccines
July 2013
With the exception of alum, emulsion-based vaccine adjuvants have been administered to far more people than any other adjuvant, especially since the 2009 H1N1 influenza pandemic. The number of clinical safety and immunogenicity evaluations of vaccines containing emulsion adjuvants has correspondingly mushroomed. In this review, the authors introduce emulsion adjuvant composition and history before detailing the most recent findings from clinical and postmarketing data regarding the effects of emulsion adjuvants on vaccine immunogenicity and safety, with emphasis on the most widely distributed emulsion adjuvants, MF59® and AS03.
View Article and Find Full Text PDFAF03 is a squalene-based emulsion adjuvant that is present in the adjuvanted pandemic influenza vaccine, Humenza™. In this report, we describe the design and development of this novel adjuvant formulation from the selection of the oil and surfactant system used in the adjuvant composition to the phase inversion temperature emulsification process that afforded AF03 as a long-term stable and well calibrated oil-in-water emulsion. The emulsion was characterized by its particle sizes, surface and interfacial tensions, viscosity, and long-term stability.
View Article and Find Full Text PDFMass spectrometry (MS) and high performance liquid chromatography coupled to mass spectrometry (HPLC-MS) techniques were developed to characterize two surfactants, cetheareth-12 and sorbitan oleate, used to manufacture AF03, an emulsified oil-in-water (O/W) adjuvant. MS was first used to characterize the chemical structure and determine the composition of the two surfactants. The two surfactants appeared as complex products, in particular with respect to the nature of the fatty alcohols and the distribution of the number of ethylene oxides in cetheareth-12, and with respect to the different sorbitan-bound fatty acids (oleic, linoleic and palmitic acids) in sorbitan oleate.
View Article and Find Full Text PDFAmong various meningococcal antigens, lipooligosaccharide (LOS) and recombinant lipidated transferrin-binding protein B (rlip-TbpB) are considered to be putative vaccine candidates against group B Neisseria meningitidis. In the present work, we report the development of a new liposome-based vaccine formulation containing both rlip-TbpB and L8 LOS. The endotoxic activity of the liposomal LOS was evaluated in vitro using the Limulus Amebocyte Lysate assay and compared to the endotoxic activity of free LOS.
View Article and Find Full Text PDFMany preclinical and clinical results indicate that liposomal systems can serve as effective adjuvants to subunit vaccines by enabling the formulation and delivery of vaccine antigens and immunopotentiators. The adjuvant effect of liposomes usually depends on both the composition of the lipid vesicles and their physical association with the vaccine antigen. This chapter describes methods for the preparation and characterization of sterile small, mostly unilamellar, lipid vesicles and for their association with vaccine antigens.
View Article and Find Full Text PDFPurpose: The objective of this study was to investigate the potential of rapidly gelling nasal inserts as vaccine delivery system.
Methods: Nasal inserts were prepared by freeze-drying hydrophilic polymer solutions containing influenza split vaccine. In vitro vaccine release from polymer solutions and inserts and the vaccine hemagglutination activity were determined.
Despite being used for more than 80 years, the mechanisms of induction of immune responses by aluminum adjuvants, generically referred to as 'alum', remain largely unknown. However, substantial amounts of recently gathered data demonstrate that aluminum salts induce an innate immune reaction at the site of vaccination. Thus, aluminum salts activate dendritic cells, monocytes and macrophages with enhanced expression of adhesion molecules CD54 and CD58 and co-stimulatory molecules CD40 and CD86, which are crucial in T cell activation; induce chemokines CCL2, CCL3, CCL4 and CXCL8, which mediate recruitment of inflammatory cells at the site of vaccination; and stimulate cytokines crucial in the innate immune response.
View Article and Find Full Text PDFThe ongoing epizootic of highly pathogenic avian H5N1 influenza and its direct transmissibility and high pathogenicity in humans has led to renewed interest in the development of influenza vaccines with enhanced immunogenicity. Influenza vaccines are currently under development against influenza strains that are potentially pandemic threats, such as H5N1, as well as against the current seasonal influenza strains for use in populations susceptible to severe influenza disease. Influenza vaccines may be generally divided into two types: seasonal vaccines for use in a population that is largely primed to subtypes of the circulating influenza A strains and pandemic influenza vaccines that are designed to protect against influenza A viruses of a hemagglutinin (HA) subtype, to which the vast majority of the population is immunologically naive.
View Article and Find Full Text PDF