Publications by authors named "Jean H Futrell"

A recent publication from this laboratory reported a theoretical analysis comparing approaches for creating harmonic ICR cells. We considered two examples of static segmented cells--namely, a seven segment cell developed in this laboratory and one described by Rempel et al., along with a recently described dynamically harmonized cell by Boldin and Nikolaev.

View Article and Find Full Text PDF

Charge reduction and desorption kinetics of ions and neutral molecules produced by soft-landing of mass-selected singly and doubly protonated Gramicidin S (GS) on different surfaces was studied using time dependant in situ secondary ion mass spectrometry (SIMS) integrated in a specially designed Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) research instrument. Soft-landing targets utilized in this study included inert self-assembled monolayers (SAMs) of 1-dodecane thiol (HSAM) and its fluorinated analog (FSAM) on gold and hydrophilic carboxyl-terminated (COOH-SAM) and amine-terminated (NH(2)-SAM) surfaces. We observed efficient neutralization of soft-landed ions on the COOH-SAM surface, partial retention of only one proton on the HSAM surface, and efficient retention of two protons on the FSAM surface.

View Article and Find Full Text PDF

A new ion deposition apparatus was designed and constructed in our laboratory. Our research objectives were to investigate interactions of biomolecules with hydrophilic and hydrophobic surfaces and to carry out exploratory experiments aimed at highly selective deposition of spatially defined and uniquely selected biological molecules on surfaces. The apparatus includes a high-transmission electrospray ion source, a quadrupole mass filter, a bending quadrupole that deflects the ion beam and prevents neutral molecules originating in the ion source from impacting the surface, an ultrahigh vacuum (UHV) chamber for ion deposition by soft landing, and a vacuum lock system for introducing surfaces into the UHV chamber without breaking vacuum.

View Article and Find Full Text PDF

Surface-induced dissociation (SID) and collision-induced dissociation (CID) are ion activation techniques based on energetic collisions with a surface or gas molecule, respectively. One noticeable difference between CID and SID is that SID does not require a collision gas for ion activation and is, therefore, directly compatible with the high vacuum requirement of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. Eliminating the introduction of collision gas into the ICR cell for collisional activation dramatically shortens the acquisition time for MS/MS experiments, suggesting that SID could be utilized for high-throughput MS/MS studies in FT-ICR MS.

View Article and Find Full Text PDF

Mass-selected peptide ions produced by electrospray ionization were deposited as ions by soft-landing (SL) onto fluorinated and hydrogenated self-assembled monolayer (FSAM and HSAM) surfaces using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying collisions of large ions with surfaces. Analysis of modified surfaces was performed in situ by combining 2 keV Cs(+) secondary ion mass spectrometry with FT-ICR detection of the sputtered ions (FT-ICR-SIMS). Similar SIMS spectra obtained following SL at different collision energies indicate that peptide fragmentation occurred in the analysis step (SIMS) rather than during ion deposition.

View Article and Find Full Text PDF

Mass-selected peptide ions produced by electrospray ionization were deposited onto fluorinated self-assembled monolayer surfaces (FSAM) surfaces by soft landing using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying interactions of large ions with surfaces. Analysis of the modified surface was performed in situ by combining 2-keV Cs+ secondary ion mass spectrometry with FT-ICR detection of the sputtered ions (FT-ICR-SIMS). Regardless of the initial charge state of the precursor ion, the SIMS mass spectra included singly protonated peptide ion, peptide fragment ions, and peaks characteristic of the surface in all cases.

View Article and Find Full Text PDF

The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has enabled the extension of mass spectrometric methods to large molecules and molecular complexes. This both greatly extends the applications of mass spectrometry and makes the activation and dissociation of complex ions an integral part of these applications. This review emphasizes the most promising methods for activation and dissociation of complex ions and presents this discussion in the context of general knowledge of reaction kinetics and dynamics largely established for small ions.

View Article and Find Full Text PDF

Enhanced gas-phase cleavage of peptides adjacent to histidine was investigated. The peptides examined were angiotensins III (RVYIHPF) and IV (VYIHPF) as well as synthetic peptide analogues with altered key residues ((R)VYI-X-Z-F; X = F or H and Z = A, P, or Sar) or a fixed charge M3P(+)CH(2)C(O)-VYIHPF. While all singly protonated peptide ions containing both histidine and arginine fragment nonselectively, the doubly protonated peptide ions with arginine and histidine, and the singly protonated peptides containing histidine but not arginine, cleave in a selective manner.

View Article and Find Full Text PDF

Intermediate pressure matrix-assisted laser desorption/ionization (MALDI) source was constructed and interfaced with a 6-T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially configured for surface-induced dissociation (SID) studies. First MALDI-SID results in FT-ICR are presented, demonstrating unique advantages of SID over conventional FT-ICR MS ion activation techniques for structural characterization of singly protonated peptide ions. Specifically, we demonstrate that SID on a diamond surface results in a significantly better sequence coverage for singly protonated peptides than SORI-CID.

View Article and Find Full Text PDF

Kinetics and dynamics studies have been carried out for the surface-induced dissociation (SID) of a set of model peptides utilizing a specially designed electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometer in which mass-selected and vibrationally relaxed ions are collided on a orthogonally-mounted fluorinated self-assembled monolayer on Au [111] crystal. The sampling time in this apparatus can be varied from hundreds of microseconds to tens of seconds, enabling the investigation of kinetics of ion decomposition over an extended range of decomposition rates. RRKM-based modeling of these reactions for a set of polyalanines demonstrates that SID kinetics of these simple peptides is very similar to slow, multiple-collision activation and that the distribution of internal energies following collisional activation is indistinguishable from a thermal distribution.

View Article and Find Full Text PDF

In the last decade, the characterization of complex molecules, particularly biomolecules, became a focus of fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) to obtain structural information for complex molecules. Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions.

View Article and Find Full Text PDF

Time- and collision energy-resolved surface-induced dissociation (SID) of des-Arg(1)- and des-Arg(9)-bradykinin on a fluorinated self-assembled monolayer (SAM) surface was studied by use of a novel Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially equipped to perform SID experiments. Time-resolved fragmentation efficiency curves (TFECs) were modeled by an RRKM-based approach developed in our laboratory that utilizes a very flexible analytical expression for the internal energy deposition function capable of reproducing both single- and multiple-collision activation in the gas phase and excitation by collisions with a surface. Both experimental observations and modeling establish a very sharp transition in the dynamics of ion-surface interaction: the shattering transition.

View Article and Find Full Text PDF

A new Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) has been constructed in our laboratory. The instrument employs surface-induced dissociation (SID) as an activation method for obtaining structural information on biomolecules in the gas phase. Tandem SID mass spectra can be acquired using either a continuous or a pulsed mode of operation.

View Article and Find Full Text PDF