Publications by authors named "Jean Guy Chabot"

Interneurons, key regulators of hippocampal neuronal network excitability and synchronization, are lost in advanced stages of Alzheimer's disease (AD). Given that network changes occur at early (presymptomatic) stages, we explored whether alterations of interneurons also occur before amyloid-beta (Aβ) accumulation. Numbers of neuropeptide Y (NPY) and parvalbumin (PV) immunoreactive (IR) cells were decreased in the hippocampus of 1 month-old TgCRND8 mouse AD model in a sub-regionally specific manner.

View Article and Find Full Text PDF

Hippocampal network activity is predominantly coordinated by γ-amino-butyric acid (GABA)ergic neurons. We have previously hypothesized that the altered excitability of hippocampal neurons in Alzheimer's disease (AD), which manifests as increased in vivo susceptibility to seizures in the TgCRND8 mouse model of AD, may be related to disruption of hippocampal GABAergic neurons. In agreement, our previous study in TgCRND8 mice has shown that hippocampal GABAergic neurons are more vulnerable to AD-related neuropathology than other types of neurons.

View Article and Find Full Text PDF

Background: Recent evidence has suggested that Alzheimer's disease (AD)-associated neuronal loss may occur via the caspase-independent route of programmed cell death (PCD) in addition to caspase-dependent mechanisms. However, the brain region specificity of caspase-independent PCD in AD-associated neurodegeneration is unknown. We therefore used the transgenic CRND8 (TgCRND8) AD mouse model to explore whether the apoptosis inducing factor (AIF), a key mediator of caspase-independent PCD, contributes to cell loss in selected brain regions in the course of aging.

View Article and Find Full Text PDF

Expression of dynorphin, an endogenous opioid peptide, increases with age and has been associated with memory impairments in rats. In human, prodynorphin (Pdyn) gene polymorphisms might be linked to cognitive function in the elderly. Moreover, elevated dynorphin levels have been reported in postmortem samples from Alzheimer's disease patients.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by memory impairments. Brain oscillatory activity is critical for cognitive function and is altered in AD patients. Recent evidence suggests that accumulation of soluble amyloid-beta (Aβ) induces reorganization of hippocampal networks.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNFα) regulates neuronal excitability. We investigated whether alterations in the level of TNFα occur at a time point that precedes the reported seizure-associated hyperexcitability of hippocampal networks in pre-plaque models of Alzheimer's disease (AD). Western blot and ELISA experiments indicated a significant increase in hippocampal TNFα expression in 1-month-old TgCRND8 mice that correlated with levels of the β-C-terminal fragment (βCTF) of amyloid-β protein precursor.

View Article and Find Full Text PDF

We have previously shown that intrathecal administration of the adrenomedullin (AM) receptor antagonist AM(22-52) produces a long-lasting anti-hyperalgesia effect. This study examined the hypothesis that AM recruits other pronociceptive mediators in complete Freund's adjuvant (CFA)-induced inflammation. Injection of CFA in the hindpaw of rat produced an increase in the expression of nNOS in dorsal root ganglion (DRG) and the spinal dorsal horn.

View Article and Find Full Text PDF

The relevance of γ-amino-butyric acid (GABA)-ergic dysfunctions in the pathology of Alzheimer's disease (AD) remains a matter of debate. In the present study, we characterized the toxicity of amyloid-β (Aβ) on hippocampal GABAergic neurons both in vivo and in vitro. In the TgCRND8 mouse model of AD, we found a significant decrease in the number of hippocampal neurons immunoreactive for glutamate decarboxylase 67 (GAD67), the enzyme synthesizing GABA.

View Article and Find Full Text PDF

Background: The neuropeptide, calcitonin gene-related peptide (CGRP) has been proposed to be a regulator of the development of morphine analgesic tolerance and thereby could be a target to reduce the induction of this phenomenon under clinical conditions. However, the mechanisms of CGRP regulation are unclear. We investigated here the possible role of the extracellular signal-regulated protein kinase (ERK), p38 and calcium/calmodulin-dependent protein kinase II (CaMKII) in CGRP regulation following chronic morphine treatment.

View Article and Find Full Text PDF

Adrenomedullin (AM) belongs to calcitonin gene-related peptide (CGRP) family and is a pronociceptive mediator. This study investigated whether AM plays a role in the development of tolerance to morphine-induced analgesia. Repetitive intrathecal injection of morphine increased the expression of AM-like immunoreactivity (AM-IR) in the spinal dorsal horn and dorsal root ganglion (DRG) neurons.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) exerts an effect on the development of morphine antinociceptive tolerance, which may in part involve the activation of p38 kinase. In the present study, we investigated the temporal expression and spatial distribution of p38 phosphorylation as well as their possible regulation by CGRP receptor signaling following chronic morphine treatment. A 7-day intrathecal treatment with morphine (15 μg/day) produced tolerance to its analgesic effects as well as a rightward shift in the dose-response curve to its antinociceptive effects.

View Article and Find Full Text PDF

Tolerance to morphine-induced analgesia is an intractable phenomenon, often hindering its prolonged applications in the clinics. The enhanced pronociceptive actions of spinal pain-related molecules such as calcitonin gene-related peptide (CGRP) may underlie this phenomenon and could be a promising target for intervention. We demonstrate here how CGRP regulates the development of morphine analgesic tolerance at the spinal level.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is linked to memory loss and is potentially triggered by the accumulation of beta-amyloid (Abeta) peptides and hyperphosphorylated Tau proteins; transthyretin (TTR) may play a neuroprotective role against this process.
  • Researchers studied the relationship between TTR and Abeta deposits in a mouse model of AD, assessing both Abeta burden and spatial learning abilities at 4 and 6 months of age.
  • The study found reduced Abeta plaque burden in younger mice with TTR presence, but no significant differences were observed in older mice; all groups exhibited similar spatial memory deficits, suggesting TTR's impact may be limited in later stages of AD progression.
View Article and Find Full Text PDF

Adrenomedullin (AM), a member of calcitonin gene-related peptide (CGRP) family, has been demonstrated to be a pronociceptive mediator [28]. This study was undertaken to investigate the role of AM in a model of complete Freund's adjuvant (CFA)-induced inflammatory pain. Injection of CFA, but not of saline, in the unilateral hindpaw produced an increase in the expression of AM-like immunoreactivity (AM-IR) in laminae I-II of the spinal cord as well as in small- and medium-sized dorsal root ganglion (DRG) neurons at 48 h.

View Article and Find Full Text PDF

Tolerance to morphine-induced analgesia is a well-established phenomenon, often limiting its usefulness in the long-term treatment of pain. The mechanisms underlying tolerance are not well understood. We previously suggested a possible role for spinal calcitonin gene-related peptide (CGRP) in the development of tolerance to morphine-induced analgesia.

View Article and Find Full Text PDF

Neuropathic pain (NeP) is a debilitating disease afflicting mostly the aged population. Inflammatory responses in injured nerves play a pivotal role in the pathogenesis of NeP. Injured nerve derived cyclooxygenase 2/prostaglandin E2 (COX2/PGE2) contributes to the genesis of NeP at the early stage in young rats.

View Article and Find Full Text PDF

Adrenomedullin-2/intermedin is structurally related to the calcitonin family of peptides, which includes calcitonin gene-related peptide (CGRP), adrenomedullin, and amylin. We recently reported that CGRP and adrenomedullin act through distinct receptors to induce cyclic adenosine monophosphate (cAMP) accumulation in dispersed cells from embryonic rat spinal cord. Here, we investigated the apparent affinity and efficacy of adrenomedullin-2/intermedin for these receptors.

View Article and Find Full Text PDF

Limited information is currently available on molecular events that underlie schizophrenia-like behaviors in animal models. Accordingly, we developed an organelle proteomic approach enabling the study of neurotransmission-related proteins in the prefrontal cortex (PFC) of postpubertal (postnatal day 60 (PD60)) neonatally ventral hippocampal (nVH) lesioned rats, an extensively used neurodevelopmental model of schizophrenia-like behaviors. The PFC was chosen because of its purported role in the etiology of the disease.

View Article and Find Full Text PDF

Adrenomedullin (AM) belongs to the calcitonin gene-related peptide (CGRP) family and is a well known potent vasodilator. We show here that AM is a powerful pain-inducing neuropeptide. AM-like immunoreactivity is widely distributed in both CGRP-containing and lectin IB4-binding nociceptors in dorsal root ganglion and axon terminals in the superficial dorsal horn of the rat spinal cord.

View Article and Find Full Text PDF

Studies implicate endocannabinoids in the acute and chronic actions of opioid drugs, including the genesis of physical dependence. Previous evidence suggests that spinal release of calcitonin gene-related peptide (CGRP) and activation of its receptors contribute to opioid physical dependence. The release of CGRP at the spinal level is modulated by cannabinoid (CB1)-receptors.

View Article and Find Full Text PDF

Adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) have structural similarities, interact with each others receptors (calcitonin receptor-like receptor (CLR)/receptor-activity-modifying proteins (RAMPs)) and show overlapping biological activities. AM and CGRP receptors are chiefly coupled to cAMP production. In this study, a method of primary dissociated cell culture was used to investigate the presence of AM and CGRP receptors and their effects on cAMP production in embryonic spinal cord cells.

View Article and Find Full Text PDF

N-terminal labelled fluorescent BODIPY-NPY peptide analogues were tested in Y1, Y2, Y4 and Y5 receptor-binding assays performed in rat brain membrane preparations and HEK293 cells expressing the rat Y1, Y2, Y4 and Y5 receptors. BODIPY TMR/FL-[Leu31, Pro34]NPY/PYY were able to compete for specific [125][Leu31, Pro34]PYY-binding sites with an affinity similar to that observed for the native peptide at the Y1 (Ki=1-6 nM), Y2 (Ki>1000 nM), Y4 (Ki=10 nM) and Y5 (Ki=1-4 nM) receptor subtypes. BODIPY FL-PYY(3-36) was able to compete for specific Y2 (Ki=10 nM) and Y5 (Ki=30 nM) binding sites, but had almost no affinity in Y1 and Y4 assays.

View Article and Find Full Text PDF

FoxO1, a member of the FoxO subfamily of forkhead transcription factors, is an important target for insulin and growth factor signaling in the regulation of metabolism, cell cycle and proliferation, and survival in peripheral tissues. However, its role in the central nervous system is mostly unknown. In this study, we examined the effect of neurotrophic factors on nuclear/cytoplasmic shuttling of FoxO1.

View Article and Find Full Text PDF

We have previously shown that exposure to the anti-cholinesterase eserine provokes interictal-like discharges in the CA3 area of hippocampal slices from adult rats in which a generalized seizure has been induced by pentylenetetrazole (PTZ) when immature (at 20 days). Such increased responsiveness to acetylcholine (ACh) was not associated with any change in hippocampal acetylcholine or gamma-aminobutyric acid (GABA) content, GABAergic inhibition or density of ACh innervation, but was blocked by the muscarinic receptor antagonist atropine. We therefore turned to quantitative radioligand binding autoradiography, in situ hybridization and the [35S]GTPgammaS method to assess the properties of hippocampal and neocortical muscarinic receptors in adult rats having experienced a PTZ seizure at P20.

View Article and Find Full Text PDF

A role for kinin B1 receptors was suggested in the spinal cord and peripheral organs of streptozotocin (STZ)-diabetic rats. The present study aims at determining whether B1 receptors are also induced and over-expressed in the brain of STZ-rats at 2, 7, and 21 days post-treatment. This was addressed by in situ hybridization using the [35S]-UTPalphaS-labeled riboprobe and by in vitro autoradiography with the radioligand [125I]-HPP-des-Arg10-Hoe 140.

View Article and Find Full Text PDF