Kaposi sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi sarcoma (KS) and certain rare B cell lymphoproliferative disorders. KSHV infection of endothelial cells (EC) increases expression of the inducible host-encoded enzyme heme oxygenase-1 (HO-1), which is also strongly expressed in KS tumors. HO-1 catalyzes the rate-limiting step in the conversion of heme into iron, biliverdin and the gasotransmitter carbon monoxide (CO), all of which share anti-apoptotic, anti-inflammatory, pro-survival, and tumorigenic activities.
View Article and Find Full Text PDFUnlabelled: Kaposi sarcoma (KS) herpesvirus (KSHV) infection of endothelial cells (EC) is associated with strong induction of heme oxygenase-1 (HO-1), a stress-inducible host gene that encodes the rate-limiting enzyme responsible for heme catabolism. KS is an angioproliferative tumor characterized by the proliferation of KSHV-infected spindle cells, and HO-1 is highly expressed in such cells. HO-1 converts the pro-oxidant, proinflammatory heme molecule into metabolites with antioxidant, anti-inflammatory, and proliferative activities.
View Article and Find Full Text PDFBackground: BST2/tetherin is an innate immune molecule with the unique ability to restrict the egress of human immunodeficiency virus (HIV) and other enveloped viruses, including Ebola virus (EBOV). Coincident with this discovery was the finding that the HIV Vpu protein down-regulates BST2 from the cell surface, thereby promoting viral release. Evidence suggests that the EBOV envelope glycoprotein (GP) also counteracts BST2, although the mechanism is unclear.
View Article and Find Full Text PDFIn the fields of virology and innate immunity, BST-2/tetherin is well known for its ability to block the egress of enveloped viruses from infected cells. This appears to be accomplished by 'tethering' virions to the cell surface, thereby limiting virion release. In the past year, several groups have discovered that BST-2/tetherin can activate NF-κB, a transcriptional activator that leads to the rapid expression of both proinflammatory cytokines and proteins involved in cell survival.
View Article and Find Full Text PDFWe have undertaken a genetic strategy to map Vpu regions necessary for BST-2 antagonism and viral egress. This approach is based on our identification of an egress-defective Vpu variant encoded by an HIV-1 subtype C strain. We constructed a series of chimeric Vpu molecules made from the Vpu C variant and Vpu B from a standard laboratory strain.
View Article and Find Full Text PDFThe cellular protein BST-2/CD317/Tetherin has been shown to inhibit the release of HIV-1 and other enveloped viruses from infected cells. The HIV-1 accessory protein Vpu binds to both BST-2 and βTrCP, a substrate-recognition subunit for the SCF (Skip1-Cullin1-F-box protein) E3 ubiquitin ligase complex. This interaction leads to both the degradation of BST-2 and the enhancement of viral egress.
View Article and Find Full Text PDFLike the other more well-characterized post-translational modifications (phosphorylation, methylation, acetylation, acylation, etc.), the attachment of the 76 amino acid ubiquitin (Ub) protein to substrates has been shown to govern countless cellular processes. As obligate intracellular parasites, viruses have evolved the capability to commandeer many host processes in order to maximize their own survival, whether it be to increase viral production or to ensure the long-term survival of latently infected host cells.
View Article and Find Full Text PDFSalmonella enterica serovar Typhimurium is a leading cause of acute gastroenteritis throughout the world. This pathogen has two type III secretion systems (TTSS) encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) that deliver virulence factors (effectors) to the host cell cytoplasm and are required for virulence. While many effectors have been identified and at least partially characterized, the full repertoire of effectors has not been catalogued.
View Article and Find Full Text PDFThe interferon-induced BST-2 protein has the unique ability to restrict the egress of HIV-1, Kaposi's sarcoma-associated herpesvirus (KSHV), Ebola virus, and other enveloped viruses. The observation that virions remain attached to the surface of BST-2-expressing cells led to the renaming of BST-2 as "tetherin". However, viral proteins such as HIV-1 Vpu, simian immunodeficiency virus Nef, and KSHV K5 counteract BST-2, thereby allowing mature virions to readily escape from infected cells.
View Article and Find Full Text PDFKaposi sarcoma (KS) is a complex cancer that arises from the initial infection of an appropriate endothelial or progenitor cell by Kaposi Sarcoma Herpesvirus/Human Herpesvirus-8 (KSHV/HHV8). However, the majority of KS cases occur when infected patients also suffer from some coincident form of immune deregulation, providing a favorable microenvironment for tumor development. Cellular hallmarks of KS progression include both the hyper-proliferation of KSHV-infected cells and the infiltration of immune modulatory cells into KS lesions, which together result in chronic inflammation, the induction of angiogenesis and tumor growth.
View Article and Find Full Text PDFTo determine the impact of a low Mg(2+)/pH defined growth medium (MgM) on the proteome of Salmonella enterica serotype Typhimurium, we cultured S. Typhimurium cells in the medium under two different conditions termed MgM Shock and MgM Dilution and then comparatively analyzed the bacterial cells harvested from these conditions by a global proteomic approach. Proteomic results showed that MgM Shock and MgM Dilution differentially affected the S.
View Article and Find Full Text PDFK3/MIR1 and K5/MIR2 of Kaposi's sarcoma-associated herpesvirus (KSHV) are viral members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family and contribute to viral immune evasion by directing the conjugation of ubiquitin to immunostimulatory transmembrane proteins. In a quantitative proteomic screen for novel host cell proteins downregulated by viral immunomodulators, we previously observed that K5, as well as the human immunodeficiency virus type 1 (HIV-1) immunomodulator VPU, reduced steady-state levels of bone marrow stromal cell antigen 2 (BST2; also called CD317 or tetherin), suggesting that BST2 might be a novel substrate of K5 and VPU. Recent work revealed that in the absence of VPU, HIV-1 virions are tethered to the plasma membrane in BST2-expressing HeLa cells.
View Article and Find Full Text PDFThe primary roles attributed to the human immunodeficiency virus type 1 (HIV-1) Vpu protein are the degradation of the viral receptor CD4 and the enhancement of virion release. With regard to CD4 downregulation, Vpu has been shown to act as an adapter linking CD4 with the ubiquitin-proteasome machinery via interaction with the F-box protein betaTrCP. To identify additional cellular betaTrCP-dependent Vpu targets, we performed quantitative proteomics analyses using the plasma membrane fraction of HeLa cells expressing either wild-type Vpu or a Vpu mutant (S52N/S56N) that does not bind betaTrCP.
View Article and Find Full Text PDFTyphoid fever is a potentially fatal disease caused by the bacterial pathogen Salmonella enterica serotype Typhi ( S. typhi). S.
View Article and Find Full Text PDFDisruption of axis specification leads to defects in dorsal tissue patterning and cell movements. Here, we examine how beta-catenin coordinately affects gastrulation movements and dorsal mesoderm differentiation. The reduction of beta-catenin protein levels by morpholino oligonucleotides complementary to beta-catenin mRNA causes a disruption in gastrulation movements.
View Article and Find Full Text PDFLasA protease is a 20-kDa elastolytic and staphylolytic enzyme secreted by Pseudomonas aeruginosa. LasA is synthesized as a preproenzyme that undergoes proteolysis to remove a 22-kDa amino-terminal propeptide. Like the propeptides of other bacterial proteases, the LasA propeptide may act as an intramolecular chaperone that correctly folds the mature domain into an active protease.
View Article and Find Full Text PDFThe pathogen Salmonella enterica is known to cause both food poisoning and typhoid fever. Because of the emergence of antibiotic-resistant isolates and the threat of bioterrorism (e.g.
View Article and Find Full Text PDFDuring vertebrate development the formation of somites is a critical step, as these structures will give rise to the vertebrae, muscle, and dermis. In Xenopus laevis, somitogenesis consists of the partitioning of the presomitic mesoderm into somites, which undergo a 90-degree rotation to become aligned parallel to the notochord. Using a membrane-targeted green fluorescent protein to visualize cell outlines, we examined the individual cell shape changes occurring during somitogenesis.
View Article and Find Full Text PDFSalmonella enterica serovar Typhimurium (also known as Salmonella typhimurium) is a facultative intracellular pathogen that causes approximately 8,000 reported cases of acute gastroenteritis and diarrhea each year in the United States. Although many successful physiological, biochemical, and genetic approaches have been taken to determine the key virulence determinants encoded by this organism, the sheer number of uncharacterized reading frames observed within the S. enterica genome suggests that many more virulence factors remain to be discovered.
View Article and Find Full Text PDFRecent fate maps of the Xenopus laevis gastrula show that mesodermal tissue surrounding the blastopore gives rise to muscle (Keller [1991] Methods Cell Biol 36:61-113; Lane and Smith [1999] Development 126:423-434). In a significant deviation from earlier data, the new maps demonstrate that cells in the ventral half of the gastrula are precursors to a significant portion of trunk somites. However, these posterior somites are not formed until tadpole stages (stages 38-44).
View Article and Find Full Text PDFSomite formation is a lengthy process that begins at gastrulation and continues through tailbud stages to form approximately 50 pairs of somites in the frog, Xenopus laevis. In Xenopus, the somite primarily gives rise to myotome. We sought to determine whether the formation of somites and myotome requires a transient signal active during gastrulation or a constitutive signal active throughout development to instruct dorsal mesodermal cells to form the posterior somites.
View Article and Find Full Text PDF