A deleterious reduction of casein intake occurring earlier in males than in females had been previously observed in old Lou/Cjall rats. On the contrary, protein intake was observed to be maintained in old males when they were offered whey protein. Present studies were designed to investigate the effect of dietary casein modification on protein decrease.
View Article and Find Full Text PDFObjective: We previously found that aging was characterized by a decreased sensitivity of muscle protein synthesis to leucine and that a free leucine-supplemented diet corrected this defect in old rats and elderly humans. The present experiment was undertaken to evaluate the efficiency of selected leucine-rich proteins to stimulate postprandial muscle protein synthesis in old rats to optimize nutritional protein support in the elderly.
Methods: Sixty rats (22 mo old) received an experimental meal for the first hour of feeding and a standard diet for the rest of the day for 30 d.
Objective: This study examined the effect of a specific acute postprandial leucine deficiency on skeletal muscle protein synthesis in growing and adult rats. Because the anabolic action of dietary leucine supplementation is controversial, except during aging, we hypothesized that the maximum leucine effect might be already achieved for a normal postprandial rise of leucine. Preventing this rise during the 1- to 3-h period after feeding may reveal the leucine regulation.
View Article and Find Full Text PDFInsulin induces protein accretion by stimulating protein synthesis and inhibiting proteolysis. However, the mechanisms of regulation of protein metabolism by insulin are complex and still not completely understood. The use of approaches combining hyperinsulinemic clamp and isotopic methods, or measurement of the activation of intracellular kinases involved in insulin signaling, in addition to the use of different animal models in a comparative physiology process, provide better understanding of the potential regulation of protein metabolism by insulin.
View Article and Find Full Text PDFThe present study was designed to assess the effects of dietary leucine supplementation on muscle protein synthesis and whole body protein kinetics in elderly individuals. Twenty healthy male subjects (70 +/- 1 years) were studied before and after continuous ingestion of a complete balanced diet supplemented or not with leucine. A primed (3.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
April 2006
The present study was carried out to assess the effects of protease inhibitor (PI) therapy on basal whole body protein metabolism and its response to acute amino acid-glucose infusion in 14 human immunodeficiency virus (HIV)-infected patients. Patients treated with PIs (PI+, 7 patients) or without PIs (PI-, 7 patients) were studied after an overnight fast during a 180-min basal period followed by a 140-min period of amino acid-glucose infusion. Protein metabolism was investigated by a primed constant infusion of l-[1-(13)C]leucine.
View Article and Find Full Text PDFWe tested the hypothesis that skeletal muscle ubiquitin-proteasome-dependent proteolysis is dysregulated in ageing in response to feeding. In Experiment 1 we measured rates of proteasome-dependent proteolysis in incubated muscles from 8- and 22-month-old rats, proteasome activities, and rates of ubiquitination, in the postprandial and postabsorptive states. Peptidase activities of the proteasome decreased in the postabsorptive state in 22-month-old rats compared with 8-month-old animals, while the rate of ubiquitination was not altered.
View Article and Find Full Text PDFOne of the most important effects of aging is sarcopenia, which is associated with impaired locomotion and general weakness. In addition, there is increased susceptibility to illness in aging, which often results in muscle wasting episodes. In such instances, the mobilization of muscle proteins provides free amino acids that are used for energetic purpose, the synthesis of acute phase proteins, and the immune response.
View Article and Find Full Text PDFInsulin resistance with aging may be responsible for impaired glycogen synthesis in the skeletal muscle of aged rats and contribute to the well-known decreased ability to respond to stress with aging. For this reason, to assess the ability of the skeletal muscle to utilize glucose for glycogen synthesis during aging, the time course of glycogen synthesis was continuously monitored by 13C nuclear magnetic resonance for 2 h in isolated [13C] glucose-perfused gastrocnemius-plantaris muscles of 5-day food-deprived adult (6-8 months; n=10) or 5-day food-deprived aged (22 months; n=8) rats. [13C] glucose (10 mmol/L) perfusion was carried out in the presence or absence of an excess of insulin (1 micromol/L).
View Article and Find Full Text PDFThe potential roles of insulin and dietary amino acids in the regulation of skeletal muscle protein synthesis were examined in adult and old rats. Animals were fed over 1 h with either a 25% or a 0% amino acid/protein meal. In each nutritional condition, postprandial insulin secretion was either maintained or blocked with diazoxide injections.
View Article and Find Full Text PDFPrevious experiments have shown in Lou/c/jall rats growing old a deleterious reduction of protein intake, which occurs earlier in males than in females. We previously showed that this decrease could not be attributed to a loss of regulation of protein intake with age. Present studies were designed to investigate if the age-related decrease of protein intake was dependent on the type of protein used.
View Article and Find Full Text PDFThis experiment was undertaken to examine leucine responsiveness of muscle protein synthesis during dexamethasone treatment and the subsequent recovery in young (4-5 weeks), adult (10-11 months) and old rats (21-22 months). Rats received dexamethasone in their drinking water. The dose and length of the treatment was adapted in order to generate the same muscle atrophy.
View Article and Find Full Text PDFAge-related loss of muscle protein may involve a decreased response to anabolic factors of muscle protein synthesis through dysregulation of translation factors. To verify this hypothesis, we simultaneously investigated muscle protein synthesis and expression of some factors implicated in insulin signal transduction during hyperinsulinemia and hyperaminoacidemia in 6 young (25+/-1 year; mean+/-sem) and 8 elderly subjects (72+/-2 year). Incorporation of L-[1-13C] leucine in muscle proteins (fractional synthesis rate, FSR) was measured in vastus lateralis, before and during a euglycemic hyperinsulinemic hyperaminoacidemic clamp, together with Western blot analysis of protein kinase B (PKB), mTOR, 4E-BP1, and S6K1 phosphorylation.
View Article and Find Full Text PDFCurr Opin Clin Nutr Metab Care
January 2004
Purpose Of Review: The application of tracer kinetic methods, combined with measurements of the activity of components of the cellular signaling pathways involved in protein synthesis and degradation, affords new insights into the regulation of skeletal muscle protein metabolism in vivo in humans. Feeding is associated with an increase in protein synthesis and a decrease in proteolysis. These changes are mediated by feeding-induced increases in plasma concentrations of both nutrients and hormones.
View Article and Find Full Text PDFCirculating levels of glucocorticoids are increased in many traumatic and muscle-wasting conditions that include insulin-dependent diabetes, acidosis, infection, and starvation. On the basis of indirect findings, it appeared that these catabolic hormones are required to stimulate Ub (ubiquitin)-proteasome-dependent proteolysis in skeletal muscles in such conditions. The present studies were performed to provide conclusive evidence for an activation of Ub-proteasome-dependent proteolysis after glucocorticoid treatment.
View Article and Find Full Text PDFWe have examined the effect of a medroxyprogesterone therapy in HIV-infected patients under appropriate nutrition for anabolism. The experiments were performed on 12 men (mean age 40 y), HIV seropositive but free of any clinically active opportunistic infection for at least one month. The patients underwent a 2-week baseline diet period (1.
View Article and Find Full Text PDFDuring ageing, a progressive loss of muscle mass has been well described in both man and rodents. This loss of proteins results from an imbalance between protein synthesis and degradation rates. Although some authors have shown a decrease of myofibrillar protein synthesis rates in human volunteers, this imbalance is not clearly apparent when basal rates of protein turnover are measured.
View Article and Find Full Text PDFAcute leucine supplementation of the diet has been shown to blunt defects in postprandial muscle protein metabolism in old rats. This study was undertaken to determine whether the effect of leucine persists in a 10-d experiment. For this purpose, adult (9 mo) and old (21 mo) rats were fed a semiliquid 18.
View Article and Find Full Text PDFThe hypothetical involvement of H2O2 in dexamethasone-mediated regulation of muscle cell differentiation and elimination was studied. Rat L6 myoblasts and mouse C2C12 satellite cells were chosen for acute (24 h) and chronic (5 or 10 day) experiments. Mitogenicity and anabolism were both affected by H2O2.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
February 2002
This work was designed to study the effect of a 3-day mild hyperglycemia (5.3 vs. 3.
View Article and Find Full Text PDFAging is characterized by a progressive loss of muscle mass. A decrease of muscle protein synthesis stimulation has been detected in the postprandial state and correlated to a decrease of muscle protein synthesis sensitivity to leucine in vitro. This study was undertaken to examine the effect of a leucine-supplemented meal on postprandial (PP) muscle protein synthesis during aging.
View Article and Find Full Text PDF