Atractyloside (ATR) was characterized in 1868 and until now structural studies on diterpenic moiety had been done through the characterization of ATR derivatives; while the glycosidic moiety seemed to be a β-D-glucopyranose a recent crystal structure of the mitochondrial ATP/ADP carrier in complex with CATR showed an α-D-glucopyranose. We decided to re-examine the ATR and CATR structures by crystallographic study of ATR.
View Article and Find Full Text PDFThe mitochondrial ADP/ATP carrier is the paradigm of the mitochondrial carrier family (MCF), whose members are crucial for cross-talks between mitochondria, where cell energy is mainly produced, and the cytosol, where cell energy is mainly consumed. These carriers share structural and functional characteristics. Resolution of the 3D structure of the beef mitochondrial ADP/ATP carrier, in a complex with one of its specific inhibitors, revealed interesting features and suggested the involvement of some particular residues in substrate binding and transfer from the outside to the inside of mitochondria.
View Article and Find Full Text PDFHelix pomatia agglutinin (HPA) is a lectin that has been used extensively in histopathology, since its binding to tissue sections from breast and colon cancers is correlated with the worst prognosis for the patients. The lectin recognizes alpha-d-N-acetylgalactosamine (alphaGalNAc) containing epitopes which are only present in cancer cell lines having a high likelihood to undergo metastasis, such as the HT29 cancer colon cell line. Several breast cancer cell lines have also been shown to be labeled, although IGROV1, an ovarian cancer cell line, is not.
View Article and Find Full Text PDFHelix pomatia agglutinin (HPA) is a N-acetylgalactosamine (GalNAc) binding lectin found in the albumen gland of the roman snail. As a constituent of perivitelline fluid, HPA protects fertilized eggs from bacteria and is part of the innate immunity system of the snail. The peptide sequence deduced from gene cloning demonstrates that HPA belongs to a family of carbohydrate-binding proteins recently identified in several invertebrates.
View Article and Find Full Text PDFA protocol for the quantitative incorporation of both selenomethionine and selenocysteine into recombinant proteins overexpressed in Escherichia coli is described. This methodology is based on the use of a suitable cysteine auxotrophic strain and a minimal medium supplemented with selenium-labeled methionine and cysteine. The proteins chosen for these studies are the cathelin-like motif of protegrin-3 and a nucleoside-diphosphate kinase.
View Article and Find Full Text PDFAleuria aurantia lectin is a fungal protein composed of two identical 312-amino acid subunits that specifically recognizes fucosylated glycans. The crystal structure of the lectin complexed with fucose reveals that each monomer consists of a six-bladed beta-propeller fold and of a small antiparallel two-stranded beta-sheet that plays a role in dimerization. Five fucose residues were located in binding pockets between the adjacent propeller blades.
View Article and Find Full Text PDFIn mammals, numerous precursors of antibacterial peptides with unrelated sequences share a similar prosequence of 94-114 residues, termed the cathelin-like domain. The cathelin-like domain of protegrin-3 (ProS) was overexpressed in Escherichia coli and uniformly labeled with (15)N or (15)N and (13)C, and its three-dimensional structure was determined by heteronuclear NMR at pH 6.2.
View Article and Find Full Text PDFCathelicidins are a family of antimicrobial proteins isolated from leucocytes and epithelia cells that contribute to the innate host defense mechanisms in mammalians. Located in the C-terminal part of the holoprotein, the cathelicidin-derived antimicrobial peptide is liberated by a specific protease cleavage. Here, we report the X-ray structure of the cathelicidin motif of protegrin-3 solved by MAD phasing using the selenocysteine-labeled protein.
View Article and Find Full Text PDFNumerous precursors of antibacterial peptides with unrelated sequences share a similar prosequence of 96-101 residues, referred to as the cathelicidin motif. The structure of this widespread motif has not yet been reported. The cathelicidin motif of protegrin-3 (ProS) was overexpressed in Escherichia coli as a His-tagged protein to facilitate its purification.
View Article and Find Full Text PDF