Publications by authors named "Jean Francois Jasmin"

Ductal carcinoma in situ (DCIS) is one of the earliest stages of breast cancer (BCa). The mechanisms by which DCIS lesions progress to an invasive state while others remain indolent are yet to be fully characterized and both diagnosis and treatment of this pre-invasive disease could benefit from better understanding the pathways involved. While a decreased expression of Caveolin-1 (Cav-1) in the tumor microenvironment of patients with DCIS breast cancer was linked to progression to invasive breast cancer (IBC), the downstream effector(s) contributing to this process remain elusive.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) displays an aggressive clinical course, heightened metastatic potential, and is linked to poor survival rates. Through its lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), this subtype remains unresponsive to traditional targeted therapies. Undesirable and sometimes life-threatening side effects associated with current chemotherapeutic agents warrant the development of more targeted treatment options.

View Article and Find Full Text PDF

Triple negative breast cancer (TNBC) is a heterogeneous disease, which lacks expression of the estrogen receptor (ER), progesterone receptor (PR) and the human epidermal growth factor 2 receptor (HER2). This subtype of breast cancer has the poorest prognosis with limited therapies currently available, and hence additional options are needed. CAPER is a coactivator of the activator protein-1 (AP-1) (interacting specifically with the c-Jun component) and the ER and is known to be involved in human breast cancer pathogenesis.

View Article and Find Full Text PDF

Breast cancers (BCas) that lack expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) are referred to as triple negative breast cancers (TNBCs) and have the poorest clinical outcome. Once these aggressive tumors progress to distant organs, the median survival decreases to 12 months. With endocrine therapies being ineffective in this BCa subtype, highly toxic chemo- and radiation therapies are the only options.

View Article and Find Full Text PDF

Nestin -cardiomyocytes were identified in the ischemically damaged human/rodent heart, albeit the cellular source, and signaling events implicated in the appearance of the intermediate filament protein remained undefined. Expression of the enhanced green fluorescent protein (EGFP) driven by the second intron of the nestin gene identified a subpopulation of EGFP/nestin cells that differentiated to a vascular phenotype in the peri-infarct/infarct region of post-MI mice albeit the transgene was not detected in nestin -cardiomyocytes. α-MHC-driven expression of the reporter mCherry was detected in troponin-T - and nestin -cardiomyocytes in the peri-infarct/infarct region of post-MI mice.

View Article and Find Full Text PDF

Inhibiting the synthesis of endogenous prostaglandins with nonsteroidal anti-inflammatory drugs exacerbates arterial hypertension. We hypothesized that the converse, i.e.

View Article and Find Full Text PDF

Atherosclerosis is a complex disease initiated by the vascular accumulation of lipoproteins in the sub-endothelial space, followed by the infiltration of monocytes into the arterial intima. Caveolin-1 (Cav-1) plays an essential role in the regulation of cellular cholesterol metabolism and of various signaling pathways. In order to study specifically the role of macrophage Cav-1 in atherosclerosis, we used Cav-1 (-/-) Apoe (-/-) mice and transplanted them with bone marrow (BM) cells obtained from Cav-1 (+/+) Apoe (-/-) or Cav-1 (-/-) Apoe (-/-) mice and vice versa.

View Article and Find Full Text PDF

Upregulation of the intermediate filament protein nestin was identified in a subpopulation of fibroblasts during reactive and reparative fibrosis and directly contributed to the enhanced proliferative phenotype. The present study tested the hypothesis that nestin was expressed in lung fibroblasts and the pattern of expression represented a distinct marker of pulmonary remodeling secondary to myocardial infarction and type I diabetes. Nestin((+)) fibroblasts were detected in rat lungs and a subpopulation exhibited a myofibroblast phenotype delineated by the co-expression of smooth muscle α-actin.

View Article and Find Full Text PDF

CAPER is an estrogen receptor (ER) co-activator that was recently shown to be involved in human breast cancer pathogenesis. Indeed, we reported increased expression of CAPER in human breast cancer specimens. We demonstrated that CAPER was undetectable or expressed at relatively low levels in normal breast tissue and assumed a cytoplasmic distribution.

View Article and Find Full Text PDF

Caveolar domains act as platforms for the organization of molecular complexes involved in signal transduction. Caveolin proteins, the principal structural components of caveolae, have been involved in many cellular processes. Caveolin-1 (Cav-1) and caveolin-2 (Cav-2) are highly expressed in the lung.

View Article and Find Full Text PDF

The orphan nuclear receptor 4A (NR4A) family plays critical roles in the regulation of cell proliferation, differentiation, and survival in the cardiovascular system. However, the molecular mechanisms underlying the regulation of NR4A receptor expression and its role in pulmonary artery smooth muscle cell (PASMC) function remain unclear. Here, we investigated whether the NR4A family regulates PASMC proliferation, and if so, which mechanisms are involved.

View Article and Find Full Text PDF

Endothelial Cell Dysfunction (ECD) is a recognized harbinger of a host of chronic cardiovascular diseases. Using a mouse model of ECD triggered by treatment with L-Nω-methylarginine (L-NMMA), we previously demonstrated that renal microvasculature displays a perturbed protein profile, including diminished expression of two key enzymes of the Krebs cycle associated with a Warburg-type suppression of mitochondrial metabolism. We hypothesized that supplementation with L-glutamine (GLN), that can enter the Krebs cycle downstream this enzymatic bottleneck, would normalize vascular function and alleviate mitochondrial dysfunction.

View Article and Find Full Text PDF

Caveolin-1 (Cav-1) is a critical regulator of tumor progression in a variety of cancers where it has been shown to act as either a tumor suppressor or tumor promoter. In glioblastoma multiforme, it has been previously demonstrated to function as a putative tumor suppressor. Our studies here, using the human glioblastoma-derived cell line U-87MG, further support the role of Cav-1 as a negative regulator of tumor growth.

View Article and Find Full Text PDF

The rodent heart contains a population of nestin((+)) cells derived from the embryonic neural crest and migrate to the scar after myocardial infarction (MI). The present study tested the hypothesis that intron 2 of the nestin gene drives expression and a subpopulation of nestin((+)) cells participate in reparative vascularisation. The directed expression of the green fluorescent protein (GFP) by the second intron of the nestin gene identified GFP/nestin((+)) cells intercalated among ventricular myocytes in the heart of normal transgenic mice.

View Article and Find Full Text PDF

Increasing chronological age is the most significant risk factor for human cancer development. To examine the effects of host aging on mammary tumor growth, we used caveolin (Cav)-1 knockout mice as a bona fide model of accelerated host aging. Mammary tumor cells were orthotopically implanted into these distinct microenvironments (Cav-1(+/+) versus Cav-1(-/-) age-matched young female mice).

View Article and Find Full Text PDF

Objective: Adiponectin (APN) system malfunction is causatively related to increased cardiovascular morbidity/mortality in diabetic patients. The aim of the current study was to investigate molecular mechanisms responsible for APN transmembrane signaling and cardioprotection.

Methods And Results: Compared with wild-type mice, caveolin-3 knockout (Cav-3KO) mice exhibited modestly increased myocardial ischemia/reperfusion injury (increased infarct size, apoptosis, and poorer cardiac function recovery; P<0.

View Article and Find Full Text PDF

Rationale: Soluble guanylyl cyclase (sGC) generates cyclic guanosine monophophate (cGMP) upon activation by nitric oxide (NO). Cardiac NO-sGC-cGMP signaling blunts cardiac stress responses, including pressure-overload-induced hypertrophy. The latter itself depresses signaling through this pathway by reducing NO generation and enhancing cGMP hydrolysis.

View Article and Find Full Text PDF

Prostaglandin E(2) (PGE(2)) triggers a vast array of biological signals and physiological events. The prostaglandin transporter (PGT) controls PGE(2) influx and is rate-limiting for PGE(2) metabolism and signaling termination. PGT global knockout mice die on postnatal day 1 from patent ductus arteriosus.

View Article and Find Full Text PDF

Caveolin proteins are structural components of caveolae and are involved in the regulation of many biological processes. Recent studies have shown that caveolin-1 modulates inflammatory responses and is important for sepsis development. In the present study, we show that caveolin-1 and caveolin-2 have opposite roles in lipopolysaccharide (LPS)-induced sepsis using caveolin-deficient (Cav-1 (-/-) and Cav-2 (-/-) ) mice for each of these proteins.

View Article and Find Full Text PDF

Prostate cancer (PCa) continues to be one of the leading causes of cancer-related deaths among American men. The prostate relies upon the androgen receptor (AR) to mediate the effects of androgens on normal growth, a reliance that is maintained during malignant prostate growth. Caveolin-1 (Cav-1), the main structural component of caveolae, has been shown to promote the malignant growth and invasion of prostate tumors.

View Article and Find Full Text PDF

Amongst calcium channel blockers, amlodipine is known to have unique cardioprotective activities likely attributable to its capacity to increase nitric oxide (NO) release from endothelial cells (EC). Because endothelial NO synthase (eNOS), the main source of NO in EC is known to be inhibited by caveolin-1 (Cav-1), the purpose of this study is to investigate the possibility that amlodipine can modulate eNOS interaction with Cav-1. Using cultured EC, we confirm that amlodipine potentiates vascular endothelial growth factor (VEGF)-induced NO release.

View Article and Find Full Text PDF

Background: Caveolins are scaffolding proteins that are integral components of caveolae, flask-shaped invaginations in the membranes of all mammalian cells. Caveolin-1 and -2 are expressed ubiquitously, whereas caveolin-3 is found only in muscle. The role of caveolin-3 in heart muscle disease is controversial.

View Article and Find Full Text PDF

Caveolin (Cav)-1 has been involved in the pathogenesis of ischemic injuries. For instance, modulations of Cav-1 expression have been reported in animal models of myocardial infarction and cerebral ischemia-reperfusion. Furthermore, ablation of the Cav-1 gene in mice has been shown to increase the extent of ischemic injury in models of cerebral and hindlimb ischemia.

View Article and Find Full Text PDF

We developed an ex vivo approach characterizing renal mesenchymal stem cell (MSC) adhesion to kidney sections. Specificity of MSC adhesion was confirmed by demonstrating a) 3T3 cells displayed 10-fold lower adhesion, and b) MSC adhesion was CXCR4/stromal-derived factor-1 (SDF-1)-dependent. MSC adhesion was asymmetrical, with postischemic sections exhibiting more than twofold higher adhesion than controls, and showed preference to perivascular areas.

View Article and Find Full Text PDF

Adult neural stem cells are self-renewing multipotent cells that have the potential to replace dysfunctional and/or dying neuronal cells at the site of brain injury or degeneration. Caveolins are well-known tumor-suppressor genes that were recently found to be involved in the regulation of stem cell proliferation. For instance, ablation of the caveolin-1 (Cav-1) gene in mice markedly increases the proliferation of intestinal and mammary stem cells.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Jean Francois Jasmin"

  • Jean Francois Jasmin's recent research primarily focuses on the mechanisms and therapeutic targets in breast cancer, particularly in triple-negative breast cancer (TNBC) and ductal carcinoma in situ (DCIS), investigating pathways related to hormone receptors and various signaling molecules.
  • His studies indicate a significant role for proteins such as STAT5a and CAPER in the progression and treatment resistance of breast cancer, suggesting that targeting these proteins could lead to more effective therapies for aggressive cancer types.
  • Additionally, Jasmin explores the implications of caveolin proteins in cancer progression and inflammatory responses, providing insights into their roles in various metabolic and pathological contexts, including the relationship between hypoxia and tumor growth.