Unlabelled: When microbes contaminate the macrophage cytoplasm, leukocytes undergo a proinflammatory death that is initiated by nucleotide-binding-domain-, leucine-rich-repeat-containing proteins (NLR proteins) that bind and activate caspase-1. We report that these inflammasome components also regulate autophagy, a vesicular pathway to eliminate cytosolic debris. In response to infection with flagellate Legionella pneumophila, C57BL/6J mouse macrophages equipped with caspase-1 and the NLR proteins NAIP5 and NLRC4 stimulated autophagosome turnover.
View Article and Find Full Text PDFDuring phagocytosis, the phosphoinositide content of the activated membrane decreases sharply, as does the associated surface charge, which attracts polycationic proteins. The cytosolic leaflet of the plasma membrane is enriched in phosphatidylserine (PS); however, a lack of suitable probes has precluded investigation of the fate of this phospholipid during phagocytosis. We used a recently developed fluorescent biosensor to monitor the distribution and dynamics of PS during phagosome formation and maturation.
View Article and Find Full Text PDFMacrophages enlist autophagy to combat infection by a variety of bacteria, viruses, and parasites. In response to this selective pressure, some pathogenic microbes have acquired strategies to evade or tolerate autophagy. Accordingly, infected cells may accumulate numerous autophagic vacuoles/autophagosomes when microbial products either stimulate their formation or inhibit their maturation.
View Article and Find Full Text PDFAutophagy is a conserved membrane traffic pathway that equips eukaryotic cells to capture cytoplasmic components within a double-membrane vacuole, or autophagosome, for delivery to lysosomes. Although best known as a mechanism to survive starvation, autophagy is now recognized to combat infection by a variety of microbes.(1-3) Not surprisingly, to establish a replication niche in host cells, some intracellular pathogens have acquired mechanisms either to evade or subvert the autophagic pathway.
View Article and Find Full Text PDFThe tol-pal genes are necessary for maintaining the outer-membrane integrity of Gram-negative bacteria. These genes were first described in Escherichia coli, and more recently in several other species. They are involved in the pathogenesis of E.
View Article and Find Full Text PDFThe Tol proteins are involved in outer membrane stability of Gram-negative bacteria. The TolQRA proteins form a complex in the inner membrane while TolB and Pal interact near the outer membrane. These two complexes are transiently connected by an energy-dependent interaction between Pal and TolA.
View Article and Find Full Text PDFThe Tol proteins are involved in the outer membrane stability of gram-negative bacteria. The C-terminal domain of TolA was mutagenized to identify residues important for its functions. The isolation of suppressor mutants of tolA mutations in the tolB gene confirmed an interaction between TolAIII and the N-terminal domain of TolB.
View Article and Find Full Text PDF