Publications by authors named "Jean Francois Arnal"

After years of studying cardiovascular diseases (CVD) in men due to their higher incidence compared to women, attention is now being paid to female CVD and their pathophysiology. Even though premenopausal women have a lower incidence of CVD, this disparity progressively diminishes after menopause, highlighting the key role of sex hormones. Many preclinical and fundamental studies have demonstrated protective effects of estrogens on arterial endothelium, suggesting that hormone therapy could improve cardiovascular health in menopausal women.

View Article and Find Full Text PDF

The major female ovarian hormone, 17β-estradiol (E), can alter neuronal excitability within milliseconds to regulate a variety of physiological processes. Estrogen receptor-α (ERα), classically known as a nuclear receptor, exists as a membrane-bound receptor to mediate this rapid action of E, but the ionic mechanisms remain unclear. Here, we show that a membrane channel protein, chloride intracellular channel protein-1 (Clic1), can physically interact with ERα with a preference to the membrane-bound ERα.

View Article and Find Full Text PDF

: 17β-estradiol (E2) can directly promote the growth of ERα-negative cancer cells through activation of endothelial ERα in the tumor microenvironment, thereby increasing a normalized tumor angiogenesis. ERα acts as a transcription factor through its nuclear transcriptional AF-1 and AF-2 transactivation functions, but membrane ERα plays also an important role in endothelium. The present study aims to decipher the respective roles of these two pathways in ERα-negative tumor growth.

View Article and Find Full Text PDF

The activation of male sexual behavior depends on brain estrogen synthesis. Estrogens act through nuclear and membrane receptors producing effects within hours/days or seconds/minutes, respectively. In mice, estrogen receptor alpha (ERα) is the main estrogen receptor (ER) controlling the activation of male sexual behavior.

View Article and Find Full Text PDF

Background: Estrogen Receptor α (ERα) is a significant modulator of energy balance and lipid/glucose metabolisms. Beyond the classical nuclear actions of the receptor, rapid activation of intracellular signaling pathways is mediated by a sub-fraction of ERα localized to the plasma membrane, known as Membrane Initiated Steroid Signaling (MISS). However, whether membrane ERα is involved in the protective metabolic actions of endogenous estrogens in conditions of nutritional challenge, and thus contributes to sex differences in the susceptibility to metabolic diseases, remains to be clarified.

View Article and Find Full Text PDF
Article Synopsis
  • Breast cancer is the most common cancer among women, and advances in detection and treatment have improved survival rates, but treatments can lead to cardiovascular issues for survivors.
  • * Cancer treatments like chemotherapy and anti-HER2 antibodies cause cardiovascular toxicity, making cardiovascular disease a significant long-term concern for breast cancer patients.
  • * This review focuses on the effects of different endocrine therapies, particularly tamoxifen, on cardiovascular health and seeks to enhance understanding of CVD risks in breast cancer survivors.*
View Article and Find Full Text PDF

Background: Adaptation of fat depots to change in fuel availability is critical for metabolic flexibility and cardiometabolic health. The mechanisms responsible for fat depot-specific lipid sensing and shuttling remain elusive. Adipose tissue microvascular endothelial cells (AT-EC) regulates bidirectional fatty acid fluxes depending on fed or fasted state.

View Article and Find Full Text PDF

Estrogens, mainly 17β-estradiol (E2), play a critical role in reproductive organogenesis, ovulation, and fertility via estrogen receptors. E2 is also a well-known regulator of utero-placental vascular development and blood-flow dynamics throughout gestation. Mouse and human placentas possess strikingly different morphological configurations that confer important reproductive advantages.

View Article and Find Full Text PDF

The main estrogen, 17β-estradiol (E2), exerts several beneficial vascular actions through estrogen receptor α (ERα) in endothelial cells. However, the impact of other natural estrogens such as estriol (E3) and estetrol (E4) on arteries remains poorly described. In the present study, we report the effects of E3 and E4 on endothelial healing after carotid artery injuries in vivo.

View Article and Find Full Text PDF

The binding of 17β-oestradiol to oestrogen receptor alpha (ERα) plays a crucial role in the control of reproduction, acting through both nuclear and membrane-initiated signalling. To study the physiological role of membrane ERα in the reproductive system, we used the C451A-ERα mouse model with selective loss of function of membrane ERα. Despite C451A-ERα mice being described as sterile, daily weighing and ultrasound imaging revealed that homozygous females do become pregnant, allowing the investigation of the role of ERα during pregnancy for the first time.

View Article and Find Full Text PDF

Testosterone deficiency in men is associated with increased atherosclerosis burden and increased cardiovascular risk. In male mice, testosterone deficiency induced by castration increases atherosclerosis as well as mature B cell numbers in spleen. As B cells are potentially pro-atherogenic, we hypothesized that there may be a link between these effects.

View Article and Find Full Text PDF

Cardiovascular diseases remain an age-related pathology in both men and women. These pathologies are 3-fold more frequent in men than in women before menopause, although this difference progressively decreases after menopause. The vasculoprotective role of estrogens are well established before menopause, but the consequences of their abrupt decline on the cardiovascular risk at menopause remain debated.

View Article and Find Full Text PDF

Introduction: Estrogens used in women's healthcare have been associated with increased risks of venous thromboembolism (VTE) and breast cancer. Estetrol (E4), an estrogen produced by the human fetal liver, has recently been approved for the first time as a new estrogenic component of a novel combined oral contraceptive (E4/drospirenone [DRSP]) for over a decade. In phase 3 studies, E4/DRSP showed good contraceptive efficacy, a predictable bleeding pattern, and a favorable safety and tolerability profile.

View Article and Find Full Text PDF

Flow-mediated dilation (FMD) of resistance arteries is essential for tissue perfusion but it decreases with ageing. As estrogen receptor alpha (Erα encoded by ), and more precisely membrane ERα, plays an important role in FMD in young mice in a ligand-independent fashion, we evaluated its influence on this arteriolar function in ageing. We first confirmed that in young (6-month-old) mice, FMD of mesenteric resistance arteries was reduced in (lacking ERα) and C451A-ERα (lacking membrane ERα).

View Article and Find Full Text PDF

Estrogen receptor alpha (ERα) activation by estrogens prevents atheroma through its nuclear action, whereas plasma membrane-located ERα accelerates endothelial healing. The genetic deficiency of ERα was associated with a reduction in flow-mediated dilation (FMD) in one man. Here, we evaluated ex vivo the role of ERα on FMD of resistance arteries.

View Article and Find Full Text PDF

Endothelial barrier integrity is required for maintaining vascular homeostasis and fluid balance between the circulation and surrounding tissues. In contrast, abnormalities of endothelial cell function and loss of the integrity of the endothelial monolayer constitute a key step in the onset of atherosclerosis. Endothelial erosion is directly responsible for thrombus formation and cardiovascular events in about one-third of the cases of acute coronary syndromes.

View Article and Find Full Text PDF

Estrogen receptor alpha (ERα) and beta (ERβ) are members of the nuclear receptor superfamily, playing widespread functions in reproductive and non-reproductive tissues. Beside the canonical function of ERs as nuclear receptors, in this review, we summarize our current understanding of extra-nuclear, membrane-initiated functions of ERs with a specific focus on ERα. Over the last decade, in vivo evidence has accumulated to demonstrate the physiological relevance of this ERα membrane-initiated-signaling from mouse models to selective pharmacological tools.

View Article and Find Full Text PDF

17β-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear "genomic" or membrane "non-genomic" actions and regulate in concert with other hormones the different stages of mammary development.

View Article and Find Full Text PDF

Objective: We evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans.

Design: Different models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice.

View Article and Find Full Text PDF

The Myocardin-related transcription factor A [MRTFA, also known as Megakaryoblastic Leukemia 1 (MKL1))] is a major actor in the epithelial to mesenchymal transition (EMT). We have previously shown that activation and nuclear accumulation of MRTFA mediate endocrine resistance of estrogen receptor alpha (ERα) positive breast cancers by initiating a partial transition from luminal to basal-like phenotype and impairing ERα cistrome and transcriptome. In the present study, we deepen our understanding of the mechanism by monitoring functional changes in the receptor's activity.

View Article and Find Full Text PDF

Bone is a multi-skilled tissue, protecting major organs, regulating calcium phosphate balance and producing hormones. Its development during childhood determines height and stature as well as resistance against fracture in advanced age. Estrogens are key regulators of bone turnover in both females and males.

View Article and Find Full Text PDF
Article Synopsis
  • Flow-mediated outward remodeling (FMR) plays a key role in recovery after blood supply loss, involving the angiotensin II type 2 receptor (AT2R) and estrogens.* -
  • In a mouse study, researchers discovered that ovariectomized (OVX) female mice showed no FMR unless treated with 17-beta-estradiol (E2), which restored arterial diameter expansion.* -
  • E2 treatment led to higher expression of the AT2R and specific inflammatory markers in arteries with increased blood flow, indicating that E2 is crucial for the AT2R-dependent remodeling process.*
View Article and Find Full Text PDF

Estetrol (E4), a natural estrogen synthesized by the human fetal liver, is currently evaluated in phase III clinical studies as a new menopause hormone therapy. Indeed, E4 significantly improves vasomotor and genito-urinary menopausal symptoms and prevents bone demineralization. Compared with other estrogens, E4 was found to have limited effects on coagulation factors in the liver of women allowing to expect less thrombotic events.

View Article and Find Full Text PDF

The protective effect of estrogens against chronic glomerular diseases is admitted but remains debated during acute kidney injury (AKI). Using a model of resuscitated hemorrhagic shock in C57/Bl6 female mice, this study evaluated at 1 and 21 days the renal effect of (1) endogenous estrogen, using ovariectomized mice with or without chronic estrogen restoration, or (2) exogenous estrogen, using a single administration of a pharmacological dose during shock resuscitation. In both ovariectomized and intact mice, hemorrhagic shock induced epithelial cell damages (assessed by KIM-1 renal expression) with secondary renal fibrosis but without significant decrease in GFR at day 21.

View Article and Find Full Text PDF