Publications by authors named "Jean Farago"

Taking advantage of the competition between elasticity and capillarity has proven to be an efficient way to design structures by folding, bending, or assembling elastic objects in contact with liquid interfaces. Elastocapillary effects often occur at scales where gravity does not play an important role, such as in microfabrication processes. However, the influence of gravity can become significant at the desktop scale, which is relevant for numerous situations including model experiments used to provide a fundamental physics understanding, working at easily accessible scales.

View Article and Find Full Text PDF

Due to their unique mechanical and thermal properties, polyurethane foams are widely used in multiple fields of applications, including cushioning, thermal insulation or biomedical engineering. However, the way polyurethane foams are usually manufactured - via chemical foaming - produces samples where blowing and gelling occur at the same time, resulting in a morphology control achieved by trial and error processes. Here, a novel strategy is introduced to build model homogeneous polyurethane foams of controlled density with millimetric bubbles from liquid templates.

View Article and Find Full Text PDF

Fluid objects bounded by elastocapillary membranes display intriguing physical properties due to the interplay of capillary and elastic stresses arising upon deformation. Increasingly exploited in foam or emulsion science, the mechanical properties of elastocapillary membranes are commonly characterised by the shape analysis of inflating/deflating bubbles or drops held by circular needles. These impose complex constraints on the membrane deformation, requiring the shape analysis to be done using elaborate numerical fitting procedures of the shape equations.

View Article and Find Full Text PDF

Minimal surface problems arise naturally in many soft matter systems whose free energies are dominated by surface or interface energies. Of particular interest are the shapes, stability, and mechanical stresses of minimal surfaces spanning specific geometric boundaries. The "catenoid" is the best-known example where an analytical solution is known which describes the form and stability of a minimal surface held between two parallel, concentric circular frames.

View Article and Find Full Text PDF

The ability of liquid interfaces to shape slender elastic structures provides powerful strategies to control the architecture of mechanical self assemblies. However, elastocapillarity-driven intelligent design remains unexplored in more complex architected liquids - such as foams. Here we propose a model system which combines an assembly of bubbles and a slender elastic structure.

View Article and Find Full Text PDF

An increasing number of multi-phase systems exploit complex interfaces in which capillary stresses are coupled with solid-like elastic stresses. Despite growing efforts, simple and reliable experimental characterisation of these interfaces remains a challenge, especially of their dilational properties. Pendant drop techniques are convenient, but suffer from complex shape changes and associated fitting procedures with multiple parameters.

View Article and Find Full Text PDF

A magnetic stirrer, an omnipresent device in the laboratory, generates a spinning magnetic dipolelike field that drives in a contactless manner the rotation of a ferromagnetic bead on top of it. We investigate here the surprisingly complex dynamics displayed by the spinning magnetic bead emerging from its dissipatively driven, coupled translation and rotation. A particularly stunning and counterintuitive phenomenon is the sudden inversion of the bead's rotational direction, from corotation to counterrotation, acting seemingly against the driving field, when the stirrer's frequency surpasses a critical value.

View Article and Find Full Text PDF

Sacrificial sphere templating has become a method of choice to generate macro-porous materials with well-defined, interconnected pores. For this purpose, the interstices of a sphere packing are filled with a solidifying matrix, from which the spheres are subsequently removed to obtain interconnected voids. In order to control the size of the interconnections, viscous sintering of the initial sphere template has proven a reliable approach.

View Article and Find Full Text PDF

By considering Voronoi tessellations of the configurations of a fluid, we propose two new conserved fields, which provide structural information not fully accounted for by the usual 2-point density correlation functions. One of these fields is scalar and associated with the volume of the Voronoi cell, whereas the other one, termed the "geometric polarisation", is vectorial and related to the local anisotropy of the configurations. We study the static and dynamical properties of these fields in the supercooled regime of a model glass-forming liquid.

View Article and Find Full Text PDF

This paper is a generalization of the models considered in J. Stat. Phys.

View Article and Find Full Text PDF

This paper focuses on the temporal discretization of the Langevin dynamics, and on different resulting numerical integration schemes. Using a method based on the exponentiation of time dependent operators, we carefully derive a numerical scheme for the Langevin dynamics, which we found equivalent to the proposal of Ermak and Buckholtz [J. Comput.

View Article and Find Full Text PDF

In this paper, a variational approach to the Soret coefficient initiated by Kempers [J. Chem. Phys.

View Article and Find Full Text PDF