Chalcones constitute an important group of natural compounds abundant in fruits and comestible plants. They are a subject of increasing interest because of their biological activities, including anti-diabetic and anti-obesity effects. The simple chalcone structural scaffold can be modified at multiple sites with different chemical moieties.
View Article and Find Full Text PDFMicroglia are involved in neuroinflammatory processes during diverse pathophysiological conditions. To date, the possible contribution of these cells to deoxynivalenol (DON)-induced brain inflammation and anorexia has not yet been evaluated. DON, one of the most abundant trichothecenes found in cereals, has been implicated in mycotoxicosis in both humans and farm animals.
View Article and Find Full Text PDFThe avoidance of being overweight or obese is a daily challenge for a growing number of people. The growing proportion of people suffering from a nutritional imbalance in many parts of the world exemplifies this challenge and emphasizes the need for a better understanding of the mechanisms that regulate nutritional balance. Until recently, research on the central regulation of food intake primarily focused on neuronal signaling, with little attention paid to the role of glial cells.
View Article and Find Full Text PDFThe metabolic syndrome, which comprises obesity and diabetes, is a major public health problem and the awareness of energy homeostasis control remains an important worldwide issue. The energy balance is finely regulated by the central nervous system (CNS), notably through neuronal networks, located in the hypothalamus and the dorsal vagal complex (DVC), which integrate nutritional, humoral and nervous information from the periphery. The glial cells' contribution to these processes emerged few year ago.
View Article and Find Full Text PDFThe contribution of neuroglial interactions to the regulation of energy balance has gained increasing acceptance in recent years. In this context, endozepines, endogenous analogs of benzodiazepine derived from diazepam-binding inhibitor, are now emerging as major players. Produced by glial cells (astrocytes and tanycytes), endozepines have been known for two decades to exert potent anorexigenic effects by acting at the hypothalamic level.
View Article and Find Full Text PDFThe ribotoxin deoxynivalenol (DON) is a trichothecene found on cereals responsible for mycotoxicosis in both humans and farm animals. DON toxicity is characterized by reduced food intake, diminished nutritional efficiency and immunologic effects. The present study was designed to further characterize the alterations in energy metabolism induced by DON intoxication.
View Article and Find Full Text PDFResearch on energy homeostasis has focused on neuronal signaling; however, the role of glial cells has remained little explored. Glial endozepines exert anorexigenic actions by mechanisms which remain poorly understood. In this context, the present study was designed to decipher the mechanisms underlying the anorexigenic action of endozepines and to investigate their potential curative effect on high-fat diet-induced obesity.
View Article and Find Full Text PDFThe existence of specific binding sites for benzodiazepines (BZs) in the brain has prompted the search for endogenous BZ receptor ligands designated by the generic term « endozepines ». This has led to the identification of an 86-amino acid polypeptide capable of displacing [H]diazepam binding to brain membranes, thus called diazepam-binding inhibitor (DBI). It was subsequently found that the sequence of DBI is identical to that of a lipid carrier protein termed acyl-CoA-binding protein (ACBP).
View Article and Find Full Text PDFNesfatin-1, an 82-amino acid peptide encoded by the secreted precursor nucleobinin-2 (NUCB2), exerts potent anorexigenic action independently of leptin signaling. This propensity has propelled this peptide and its analogues as potential anti-obesity drug candidates. However, a more extensive comprehension of its biological actions is needed prior to envisaging its potential use in the treatment of metabolic diseases.
View Article and Find Full Text PDFWe compared the effects of single intraveinous injection of pituitary adenylate cyclase-activating polypeptide-38 (P38) to those of its analog, acetyl-[Ala, Ala]PACAP-38-propylamide (P38-alg) on spatial memory in the Morris water maze (MWM) using a weak massed-learning procedure, post-training brain derived neurotrophic factor (BDNF) and post-training oxidative stress biomarker assays in male Wistar rats. Acquisition of the MWM task following P38 (30 μg/kg) and P38-alg (30 μg/kg) treatments was similar to control group (Saline: 0.9% NaCl) and there was no interaction between treatments and performance.
View Article and Find Full Text PDFChronic low-grade inflammation is known to be linked to obesity, and to occur in the early stages of the disease. This mechanism is complex and involves numerous organs, cells, and cytokines. In this context, inflammation of white adipose tissue seems to play a key role in the development of obesity.
View Article and Find Full Text PDFEndozepines are endogenous ligands for the benzodiazepine receptors and also target a still unidentified GPCR. The endozepine octadecaneuropeptide (ODN), an endoproteolytic processing product of the diazepam-binding inhibitor (DBI) was recently shown to be involved in food intake control as an anorexigenic factor through ODN-GPCR signaling and mobilization of the melanocortinergic signaling pathway. Within the hypothalamus, the DBI gene is mainly expressed by non-neuronal cells such as ependymocytes, tanycytes, and protoplasmic astrocytes, at levels depending on the nutritional status.
View Article and Find Full Text PDFDeoxynivalenol (DON), one of the most abundant mycotoxins found on cereals, is known to be implicated in acute and chronic illnesses in both humans and animals. Among the symptoms, anorexia, reduction of weight gain and decreased nutrition efficiency were described, but the mechanisms underlying these effects on feeding behavior are not yet totally understood. Swallowing is a major motor component of ingestive behavior which allows the propulsion of the alimentary bolus from the mouth to the esophagus.
View Article and Find Full Text PDFThe central nervous system (CNS) monitors modifications in metabolic parameters or hormone levels and elicits adaptive responses such as food intake regulation. Particularly, within the hypothalamus, leptin modulates the activity of pro-opiomelanocortin (POMC) neurons which are critical regulators of energy balance. Consistent with a pivotal role of the melanocortin system in the control of energy homeostasis, disruption of the POMC gene causes hyperphagia and obesity.
View Article and Find Full Text PDFTrichothecenes are toxic metabolites produced by fungi that constitute a worldwide hazard for agricultural production and both animal and human health. More than 40 countries have introduced regulations or guidelines for food and feed contamination levels of the most prevalent trichothecene, deoxynivalenol (DON), on the basis of its ability to cause growth suppression. With the development of analytical tools, evaluation of food contamination and exposure revealed that a significant proportion of the human population is chronically exposed to DON doses exceeding the provisional maximum tolerable daily dose.
View Article and Find Full Text PDFScope: Deoxynivalenol (DON) is the most common fungi toxin contaminating cereals and cereal-derived products. High consumption of DON is implicated in mycotoxicoses and causes a set of symptoms including diarrhea, vomiting, reduced weight gain or immunologic effects. However, such clinical intoxications are rare in humans, who are most frequently, exposed to low DON doses without developing acute symptoms.
View Article and Find Full Text PDFObjective: The study was designed to determine metformin effects on meal pattern, gastric emptying, energy expenditure, and to identify metformin-sensitive neurons and their phenotype.
Methods: This study was performed on C57BL/6J and obese/diabetic (db/db) mice. Metformin (300 mg/kg) was administered by oral gavage.
The anticancer drug bexarotene has been shown to restore cognitive functions in animal models of Alzheimer's disease, but its exact mechanism of action remains elusive. In the present report, we have used a combination of molecular, physicochemical, and cellular approaches to elucidate the mechanisms underlying the anti-Alzheimer properties of bexarotene in neural cells. First of all, we noticed that bexarotene shares a structural analogy with cholesterol.
View Article and Find Full Text PDFT-2 toxin is one of the most toxic Fusarium-derived trichothecenes found on cereals and constitutes a widespread contaminant of agricultural commodities as well as commercial foods. Low doses toxicity is characterized by reduced weight gain. To date, the mechanisms by which this mycotoxin profoundly modifies feeding behavior remain poorly understood and more broadly the effects of T-2 toxin on the central nervous system (CNS) have received limited attention.
View Article and Find Full Text PDFType 2 diabetes (T2D) represents a significant global epidemic with more than 285 million people affected worldwide. Regulating glycemia in T2D patients can be partially achieved with currently available treatment, but intensive research during the last decades have led to the discovery of modified compounds or new targets that could represent great hope for safe and effective treatment in the future. Among them, targets in the CNS that are known to control feeding and body weight have been also shown to exert glucoregulatory actions, and could be a key in the development of a new generation of drugs in the field of T2D.
View Article and Find Full Text PDFBrainstem structures such as the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus nerve (DMNX) are essential for the digestive function of the stomach. A large number of neurotransmitters including glutamate and gamma-aminobutyric acid (GABA) are involved in the central control of gastric functions. However, the neuropeptidergic systems implicated in this process remain undetermined.
View Article and Find Full Text PDFAlzheimer β-amyloid (Aβ) peptides can self-organize into oligomeric ion channels with high neurotoxicity potential. Cholesterol is believed to play a key role in this process, but the molecular mechanisms linking cholesterol and amyloid channel formation have so far remained elusive. Here, we show that the short Aβ22-35 peptide, which encompasses the cholesterol-binding domain of Aβ, induces a specific increase of Ca(2+) levels in neural cells.
View Article and Find Full Text PDFDeoxynivalenol (DON), mainly produced by Fusarium fungi, and also commonly called vomitoxin, is a trichothecene mycotoxin. It is one of the most abundant trichothecenes which contaminate cereals consumed by farm animals and humans. The extent of cereal contamination is strongly associated with rainfall and moisture at the time of flowering and with grain storage conditions.
View Article and Find Full Text PDFDeoxynivalenol (DON), produced by the cereal-contaminating Fusarium fungi, is a major trichothecene responsible for mycotoxicoses in farm animals, including swine. The main effect of DON-intoxication is food intake reduction and the consequent body weight loss. The present study aimed to identify brain structures activated during DON intoxication in pigs.
View Article and Find Full Text PDFPhysiological regulations of energy balance and body weight imply highly adaptive mechanisms which match caloric intake to caloric expenditure. In the central nervous system, the regulation of appetite relies on complex neurocircuitry which disturbance may alter energy balance and result in anorexia or obesity. Deoxynivalenol (DON), a trichothecene, is one of the most abundant mycotoxins found on contaminated cereals and its stability during processing and cooking explains its widespread presence in human food.
View Article and Find Full Text PDF