Publications by authors named "Jean Claude Voegel"

Designing convenient substrates is a pertinent parameter that can guide stem cell differentiation. Current research is directed toward differentiating mesenchymal stem cells (MSCs) into endothelial cells (ECs). It is generally accepted that MSCs cannot be easily differentiated into ECs without high concentrations of proangiogenic factors.

View Article and Find Full Text PDF

This study aims to design an optimal polyelectrolyte multilayer film of poly-l-lysine (PLL) and hyaluronic acid (HA) as an anti-inflammatory cytokine release system in order to decrease the implant failure due to any immune reactions. The chemical modification of the HA with aldehyde moieties allows self-cross-linking of the film and an improvement in the mechanical properties of the film. The cross-linking of the film and the release of immunomodulatory cytokine (IL-4) stimulate the differentiation of primary human monocytes seeded on the films into pro-healing macrophages phenotype.

View Article and Find Full Text PDF

For many years it has been a major challenge to regenerate damaged tissues using synthetic or natural materials. To favor the healing processes after tendon, cornea, muscle, or brain injuries, aligned collagen-based architectures are of utmost interest. In this study, we define a novel aligned coating based on a collagen/alginate (COL/ALG) multilayer film.

View Article and Find Full Text PDF

Substrate stiffness is known to strongly influence the fate of adhering cells. Yet, little is known about the influence of the substrate stiffness on chromatin. Chromatin integrates a multitude of biochemical signals interpreted by activation or gene silencing.

View Article and Find Full Text PDF

In this article, we address the design of innovative human serum albumin (HSA)-based nanoparticles loaded with silencing RNA and grafted with gadolinium complexes having average sizes ranging from ca. 50 to 150 nm according to the siRNA/HSA composition. The non-covalent siRNA/HSA assembly is formed on isobutyramide-modified mesoporous silica and the self-supported HSA-based nanoparticles are obtained following the silica template dissolution.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers investigated the effects of noncovalent host-guest interactions between cyclodextrin and various compounds (like pyrene, ferrocene, and adamantane) on the resulting film structures of neutral poly(N-hydroxypropylmethacrylamide) multilayers.
  • * The findings indicate that as the strength of host-guest interactions changes, the film structures transition from isolated aggregates to droplet-like formations and ultimately to smooth continuous films, revealing a complex relationship between interaction strength and film topology.
View Article and Find Full Text PDF

Simultaneous spraying of polyelectrolytes and small multicharged molecules of opposite charges onto a vertical substrate leads to continuous buildups of organic films. Here, we investigate the rules governing the buildup of two such systems: poly(allylamine hydrochloride)/sodium citrate (PAH/citrate) and PAH/sulfated α-cyclodextrin (PAH/CD-S). Special attention is paid to the film growth rate as a function of the spraying rate ratio of the two constituents.

View Article and Find Full Text PDF

In colon cancer, a highly aggressive disease, progression through the malignant sequence is accompanied by increasingly numerous chromosomal rearrangements. To colonize target organs, invasive cells cross several tissues of various elastic moduli. Whether soft tissue increases malignancy or in contrast limits invasive colon cell spreading remains an open question.

View Article and Find Full Text PDF

The present study describes hybrid nanoparticles, built by alternate deposition of siRNA and modified polyethyleneimine (tyrosine-grafted PEI or tyrosine/galactose-grafted PEI) on calcium phosphate nanoparticles. These "easy to produce" nanoparticles (NPs) present an efficient gene silencing effect demonstrated in vitro in a luciferase expressing cell culture model and in vivo in a tumour xenograft mouse model. The luciferase gene silencing percentage reached up to 95% in vitro with biocompatible doses of siRNA.

View Article and Find Full Text PDF

In arterial replacement there is a clear clinical need for a functional substitute possessing appropriate haemocompatible properties to be implanted as small diameter artery. Endothelial cell seeding constitutes an appreciated method to improve blood compatibility on the condition that cells firmly adhere to the support. Along this way, an innovative technique based on multilayered polyelectrolyte films (PEM) as cell adhesive substrate was previously validated in vitro and in vivo in a small-animal model.

View Article and Find Full Text PDF

The design of films using a one-pot process has recently attracted increasing interest in the field of polymer thin film formation. Herein we describe the preparation of one-pot supramolecular polyrotaxane (PRX) films using the morphogen-driven self-construction process. This one-pot buildup strategy where the film growth is triggered by the electrochemical formation and diffusion of a catalyst in close vicinity of the substrate has recently been introduced by our group.

View Article and Find Full Text PDF

The major challenge of vascular tissue engineering is to develop a small calibre vascular graft with a high patency rate. In native vessels, the thrombosis is prevented by the endothelium located at the luminal site of the vessel. The aim of this study was to develop a resistant endothelial lining on the inner surface of vascular graft using a polyelectrolyte multilayers (PEM) film.

View Article and Find Full Text PDF

The identification and quantification of biomarkers or proteins is a real challenge in allowing the early detection of diseases. The functionalization of the biosensor surface has to be properly designed to prevent nonspecific interactions and to detect the biomolecule of interest specifically. A multilayered nanoarchitecture, based on polyelectrolyte multilayers (PEM) and the sequential immobilization of streptavidin and a biotinylated antibody, was elaborated as a promising platform for the label-free sensing of targeted proteins.

View Article and Find Full Text PDF

The design of stimuli-responsive polymer assemblies for the controlled release of bioactive molecules has raised considerable interest these two last decades. Herein, we report the design of mechanically responsive drug-releasing films made of polyelectrolyte multilayers. A layer-by-layer (LbL) reservoir containing biodegradable polyelectrolytes is capped with a mechanosensitive LbL barrier and responds to stretching by a total enzymatic degradation of the film.

View Article and Find Full Text PDF

We report the sequential assembly of proteins via the alternating physical adsorption of human serum albumin (HSA) and chemical grafting with isobutyramide (IBAM) or bromoisobutyramide (BrIBAM) groups. This approach, performed on silica template particles, leads to the formation of noncovalent protein films with controlled growth at the nanometer scale. Further, after template removal, hollow protein capsules with tunable wall thicknesses and high mechanical stability are obtained.

View Article and Find Full Text PDF

An original "all-in-one" platform combining polymers, enzymes, and enzymatic substrates in a unique film is designed. A polymeric barrier stratum prevents any contact between enzymes adsorbed on top of the film and substrates loaded in an underlying reservoir. Upon stretching of the film, a continuous diffusion of substrates through the barrier is triggered, followed by a catalytic reaction.

View Article and Find Full Text PDF

Surface functionalization plays an important role in the design of biomedical implants, especially when layer forming cells, such as endothelial or epithelial cells, are needed. In this study, we define a novel nanoscale surface coating composed of collagen/alginate polyelectrolyte multilayers and cross-linked for stability with genipin. This buildup follows an exponential growth regime versus the number of deposition cycles with a distinct nanofibrillar structure that is not damaged by the cross-linking step.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how human serum albumin moves within a hydrated film made from the combination of poly(L-lysine) and hyaluronate, using fluorescence recovery after photobleaching to analyze protein mobility.
  • A mathematical approach involving spatial Fourier transformation is utilized, allowing the evaluation of protein diffusion without needing prior assumptions about concentration distributions, granted the bleach does not significantly affect the concentration ratios.
  • Results reveal that the diffusion of albumin molecules slows down significantly when their concentration within the film rises, highlighting the growing influence of interactions between albumin molecules and the film as concentration increases.
View Article and Find Full Text PDF

The alternate deposition of polyanions and polycations on a solid substrate leads to the formation of nanometer to micrometer films called Polyelectrolyte Multilayers. This step-by-step construction of organic films constitutes a method of choice to functionalize surfaces with applications ranging from optical to bioactive coatings. The method was originally developed by dipping the substrate in the different polyelectrolyte solutions.

View Article and Find Full Text PDF

Cell adhesion processes take place through mechanotransduction mechanisms where stretching of proteins results in biological responses. In this work, we present the first cyto-mechanoresponsive surface that mimics such behavior by becoming cell-adhesive through exhibition of arginine-glycine-aspartic acid (RGD) adhesion peptides under stretching. This mechanoresponsive surface is based on polyelectrolyte multilayer films built on a silicone sheet and where RGD-grafted polyelectrolytes are embedded under antifouling phosphorylcholine-grafted polyelectrolytes.

View Article and Find Full Text PDF

Materials of defined elasticity, including synthetic material scaffolds and tissue-derived matrices, can regulate biological responses of cells and in particular adhesion, migration, growth and differentiation which are essential parameters for tissue integration. These responses have been extensively investigated in interphase cells, but little is known whether and how material elasticity affects mitotic cells. We used polyelectrolyte multilayer films as model substrates with elastic modulus ranging from Eap = 0 up to Eap = 500 kPa and mitotic PtK2 epithelial cells to address these important questions.

View Article and Find Full Text PDF

The deposition of surface coatings using a step-by-step approach from mutually interacting species allows the fabrication of so called "multilayered films". These coatings are very versatile and easy to produce in environmentally friendly conditions, mostly from aqueous solution. They find more and more applications in many hot topic areas, such as in biomaterials and nanoelectronics but also in stimuli-responsive films.

View Article and Find Full Text PDF

Considering restrictive diabetes treatments, new insulin administration strategies constitute a huge medical challenge. This study aimed at developing a new support for insulin reservoirs, using polyelectrolyte multilayer films (PEM films), and thus studying this hormone release in a progressive manner. At first, insulin was loaded in (PDADMAC-PAA)n films, by immerging them for various periods of time (2, 14 and 24 h) in a solution containing this protein.

View Article and Find Full Text PDF