This mini-review explores sexual dimorphism in the ventral midline thalamus, focusing on the reuniens nucleus and its role in behavioral functions. Traditionally linked to tasks such as working memory, cognitive flexibility, fear generalization, and memory consolidation, most studies have been conducted in male rodents. Research comparing the effects of ventral midline thalamus manipulations between female and male rodents is limited.
View Article and Find Full Text PDFThe ventral midline thalamus, including the reuniens and rhomboid (ReRh) nuclei, connects bidirectionally with the medial prefrontal cortex (mPFC) and hippocampus (Hip), both essential for memory processes. This review compiles and discusses studies on a role for the ReRh nuclei in the system consolidation of memories, also considering their potentially limited participation in memory retrieval or early phases of consolidation. It also examines scientific literature on short- and long-term plasticity in ReRh-mPFC and ReRh-Hip connections, emphasizing plasticity's importance in understanding these nuclei's role in memory.
View Article and Find Full Text PDFBackground: Dementia with Lewy bodies (DLB) is the second most common age-related neurocognitive pathology after Alzheimer's disease. Animal models characterizing this disease are lacking and their development would ameliorate both the understanding of neuropathological mechanisms underlying DLB as well as the efficacy of pre-clinical studies tackling this disease.
Methods: We performed extensive phenotypic characterization of a transgenic mouse model overexpressing, most prominently in the dorsal hippocampus (DH) and frontal cortex (FC), wild-type form of the human α-synuclein gene (mThy1-hSNCA, 12 to 14-month-old males).
The reuniens (Re) nucleus is located in the ventral midline thalamus. It has fostered increasing interest, not only for its participation in a variety of cognitive functions (e.g.
View Article and Find Full Text PDFAging is the main risk factor of cognitive neurodegenerative diseases such as Alzheimer's disease, with epigenome alterations as a contributing factor. Here, we compared transcriptomic/epigenomic changes in the hippocampus, modified by aging and by tauopathy, an AD-related feature. We show that the cholesterol biosynthesis pathway is severely impaired in hippocampal neurons of tauopathic but not of aged mice pointing to vulnerability of these neurons in the disease.
View Article and Find Full Text PDFBackground: The thalamic reuniens (Re) and rhomboid (Rh) nuclei are bidirectionally connected with the medial prefrontal cortex (mPFC) and the hippocampus (Hip). Fiber-sparing N-methyl-D-aspartate lesions of the ReRh disrupt cognitive functions, including persistence of certain memories. Because such lesions irremediably damage neurons interconnecting the ReRh with the mPFC and the Hip, it is impossible to know if one or both pathways contribute to memory persistence.
View Article and Find Full Text PDFCytoplasmic mislocalization of the nuclear Fused in Sarcoma (FUS) protein is associated to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS accumulation is recapitulated in the frontal cortex and spinal cord of heterozygous Fus mice. Yet, the mechanisms linking FUS mislocalization to hippocampal function and memory formation are still not characterized.
View Article and Find Full Text PDFMolecular mechanisms underlying cognitive deficits in Huntington's disease (HD), a striatal neurodegenerative disorder, are unknown. Here, we generated ChIPseq, 4Cseq and RNAseq data on striatal tissue of HD and control mice during striatum-dependent egocentric memory process. Multi-omics analyses showed altered activity-dependent epigenetic gene reprogramming of neuronal and glial genes regulating striatal plasticity in HD mice, which correlated with memory deficit.
View Article and Find Full Text PDFWorking memory (WM) is a function operating in three successive phases: encoding (sample trial), holding (delay), and retrieval (test trial) of information. Studies point to a possible implication of the thalamic reuniens nucleus (Re) in spatial WM (SWM). In which of the aforementioned 3 phases the Re has a function is largely unknown.
View Article and Find Full Text PDFUsing a partial hippocampal cholinergic denervation model, we assessed the effects of the RGTA named OTR4132, a synthetic heparan-mimetic biopolymer with neuroprotective/neurotrophic properties. Long-Evans male rats were injected with the cholinergic immunotoxin 192 IgG-saporin into the medial septum/diagonal band of Broca (0.37 µg); vehicle injections served as controls.
View Article and Find Full Text PDFThe reuniens (Re) and rhomboid (Rh) nuclei of the ventral midline thalamus are bi-directionally connected with the hippocampus and the medial prefrontal cortex. They participate in a variety of cognitive functions, including information holding for seconds to minutes in working memory tasks. What about longer delays? To address this question, we used a spatial working memory task in which rats had to reach a platform submerged in water.
View Article and Find Full Text PDFMicroglia play a critical role in maintaining neural function. While microglial activity follows a circadian rhythm, it is not clear how this intrinsic clock relates to their function, especially in stimulated conditions such as in the control of systemic energy homeostasis or memory formation. In this study, we found that microglia-specific knock-down of the core clock gene, Bmal1, resulted in increased microglial phagocytosis in mice subjected to high-fat diet (HFD)-induced metabolic stress and likewise among mice engaged in critical cognitive processes.
View Article and Find Full Text PDFOver the past twenty years, the reuniens and rhomboid (ReRh) nuclei, which constitute the ventral midline thalamus, have received constantly growing attention. Since our first review article about the functional contributions of ReRh nuclei (Cassel et al., 2013), numerous (>80) important papers have extended anatomical knowledge, including at a developmental level, introduced new and very original electrophysiological insights on ReRh functions, and brought novel results on cognitive and non-cognitive implications of the ReRh.
View Article and Find Full Text PDFThe most distant roots of neuroanatomy trace back to antiquity, with the first human dissections, but no document which would identify the thalamus as a brain structure has reached us. Claudius Galenus (Galen) gave to the thalamus the name 'thalamus nervorum opticorum', but later on, other names were used (e.g.
View Article and Find Full Text PDFThe consolidation of declarative memories is believed to occur mostly during sleep and involves a dialogue between two brain regions, the hippocampus and the medial prefrontal cortex. The information encoded during experience by neuronal assemblies is replayed during sleep leading to the progressive strengthening and integration of the memory trace in the prefrontal cortex. The gradual transfer of information from the hippocampus to the medial prefrontal cortex for long-term storage requires the synchronization of cortico-hippocampal networks by different oscillations, like ripples, spindles, and slow oscillations.
View Article and Find Full Text PDFTemporal dynamics and mechanisms underlying epigenetic changes in Huntington's disease (HD), a neurodegenerative disease primarily affecting the striatum, remain unclear. Using a slowly progressing knockin mouse model, we profile the HD striatal chromatin landscape at two early disease stages. Data integration with cell type-specific striatal enhancer and transcriptomic databases demonstrates acceleration of age-related epigenetic remodelling and transcriptional changes at neuronal- and glial-specific genes from prodromal stage, before the onset of motor deficits.
View Article and Find Full Text PDFMicroglia are brain immune cells responsible for immune surveillance. Microglial activation is, however, closely associated with neuroinflammation, neurodegeneration, and obesity. Therefore, it is critical that microglial immune response appropriately adapts to different stressors.
View Article and Find Full Text PDFBackground: CREB-dependent transcription necessary for long-term memory is driven by interactions with CREB-binding protein (CBP), a multi-domain protein that binds numerous transcription factors potentially affecting expression of thousands of genes. Identifying specific domain functions for multi-domain proteins is essential to understand processes such as cognitive function and circadian clocks. We investigated the function of the CBP KIX domain in hippocampal memory and gene expression using CBP mice with mutations that prevent phospho-CREB (Ser133) binding.
View Article and Find Full Text PDFAccording to the standard theory of memory consolidation, recent memories are stored in the hippocampus before their transfer to cortical modules, a process called systemic consolidation. The ventral midline thalamus (reuniens and rhomboid nuclei, ReRh) takes part in this transfer as its lesion disrupts systemic consolidation of spatial and contextual fear memories. Here, we wondered whether ReRh lesions would also affect the systemic consolidation of another type of memory, namely an olfaction-based social memory.
View Article and Find Full Text PDFOur previous studies consistently showed that MDMA-induced locomotor hyperactivity is dramatically increased by coadministration of ethanol (EtOH) in rats, indicating possible potentiation of MDMA abuse liability. Thus, we aimed to identify the brain region(s) and neuropharmacological substrates involved in the pharmacodynamics of this potentiation. We first showed that potentiation of locomotor activity by the combination of ip administration of EtOH (1.
View Article and Find Full Text PDFMemory persistence refers to the process by which a temporary, labile memory is transformed into a stable and long-lasting state. This process involves a reorganization of brain networks at systems level, which requires functional interactions between the hippocampus (HP) and medial prefrontal cortex (mPFC). The reuniens (Re) and rhomboid (Rh) nuclei of the ventral midline thalamus are bidirectionally connected with both regions, and we previously demonstrated their crucial role in spatial memory persistence.
View Article and Find Full Text PDFMemory impairment is the main feature of Alzheimer's disease (AD). Initial impairments originate in the temporal lobe area and propagate throughout the brain in a sequential manner. Epigenetic mechanisms, especially histone acetylation, regulate plasticity and memory processes.
View Article and Find Full Text PDFNeurobiol Learn Mem
January 2020
Response and place memory systems have long been considered independent, encoding information in parallel, and involving the striatum and hippocampus, respectively. Most experimental studies supporting this view used simple, repetitive tasks, with unrestrained access to spatial cues. They did not give animals an opportunity to correct a response strategy by shifting to a place one, which would demonstrate dynamic, adaptive interactions between both memory systems in the navigation correction process.
View Article and Find Full Text PDF