Background: Malignant pleural effusions (MPEs) are a common complication of advanced cancers, particularly those adjacent to the pleura, such as lung and breast cancer. The pathophysiology of MPE formation remains poorly understood, and although MPEs are routinely used for the diagnosis of breast cancer patients, their composition and biology are poorly understood. It is difficult to distinguish invading malignant cells from resident mesothelial cells and to identify the directionality of interactions between these populations in the pleura.
View Article and Find Full Text PDFIntratumoural heterogeneity is associated with poor outcomes in breast cancer. To understand how malignant clones survive and grow in metastatic niches, in vivo models using cell lines and patient-derived xenografts (PDX) have become the gold standard. Injections of cancer cells in orthotopic sites (spontaneous metastasis assays) or into the vasculature (experimental metastasis assays) have been used interchangeably to study the metastatic cascade from early events or post-intravasation, respectively.
View Article and Find Full Text PDFCellular inhibitor of apoptosis-1 (cIAP1) is a signaling regulator with oncogenic properties. It is involved in the regulation of signaling pathways controlling inflammation, cell survival, proliferation, differentiation and motility. It is recruited into membrane-receptor-associated signaling complexes thanks to the molecular adaptor TRAF2.
View Article and Find Full Text PDFTumours are often composed of a multitude of malignant clones that are genomically unique, and only a few of them may have the ability to escape cancer therapy and grow as symptomatic lesions. As a result, tumours with a large degree of genomic diversity have a higher chance of leading to patient death. However, clonal fate can be driven by non-genomic features.
View Article and Find Full Text PDFThe development of therapies that target specific disease subtypes has dramatically improved outcomes for patients with breast cancer. However, survival gains have not been uniform across patients, even within a given molecular subtype. Large collections of publicly available drug screening data matched with transcriptomic measurements have facilitated the development of computational models that predict response to therapy.
View Article and Find Full Text PDFUnderstanding intratumoral heterogeneity-the molecular variation among cells within a tumor-promises to address outstanding questions in cancer biology and improve the diagnosis and treatment of specific cancer subtypes. Single-cell analyses, especially RNA sequencing and other genomics modalities, have been transformative in revealing novel biomarkers and molecular regulators associated with tumor growth, metastasis and drug resistance. However, these approaches fail to provide a complete picture of tumor biology, as information on cellular location within the tumor microenvironment is lost.
View Article and Find Full Text PDFIntratumoral heterogeneity is a driver of breast cancer progression, but the nature of the clonal interactive network involved in this process remains unclear. Here, we optimized the use of optical barcoding to visualize and characterize 31 cancer subclones in vivo. By mapping the clonal composition of thousands of metastases in two clinically relevant sites, the lungs and liver, we found that metastases were highly polyclonal in lungs but not in the liver.
View Article and Find Full Text PDFPapillary thyroid cancer (PTC) is the most common type of endocrine malignancy. By RNA-seq analysis, we identify a RET rearrangement in the tumour material of a patient who does not harbour any known RAS or BRAF mutations. This new gene fusion involves exons 1-4 from the 5' end of the Trk fused Gene (TFG) fused to the 3' end of RET tyrosine kinase leading to a TFG-RET fusion which transforms immortalized human thyroid cells in a kinase-dependent manner.
View Article and Find Full Text PDFSmac mimetics target inhibitor of apoptosis (IAP) proteins, thereby suppressing their function to facilitate tumor cell death. Here we have evaluated the efficacy of the preclinical Smac-mimetic compound A and the clinical lead birinapant on breast cancer cells. Both exhibited potent in vitro activity in triple-negative breast cancer (TNBC) cells, including those from patient-derived xenograft (PDX) models.
View Article and Find Full Text PDFThe cellular inhibitor of apoptosis 1 (cIAP1) is an E3-ubiquitin ligase that regulates cell signaling pathways involved in fundamental cellular processes including cell death, cell proliferation, cell differentiation and inflammation. It recruits ubiquitination substrates thanks to the presence of three baculoviral IAP repeat (BIR) domains at its N-terminal extremity. We previously demonstrated that cIAP1 promoted the ubiquitination of the E2 factor 1 (E2F1) transcription factor.
View Article and Find Full Text PDFCorrection to:Cell Death & Disease8, e2816 (2017); https://doi.org/10.1038/cddis.
View Article and Find Full Text PDFThe E2F transcription factor 1 is subtly regulated along the cell cycle progression and in response to DNA damage by post-translational modifications. Here, we demonstrated that the E3-ubiquitin ligase cellular inhibitor of apoptosis 1 (cIAP1) increases E2F1 K63-poly-ubiquitination on the lysine residue 161/164 cluster, which is associated with the transcriptional factor stability and activity. Mutation of these lysine residues completely abrogates the binding of E2F1 to CCNE, TP73 and APAF1 promoters, thus inhibiting transcriptional activation of these genes and E2F1-mediated cell proliferation control.
View Article and Find Full Text PDFStatins are a well-established family of drugs that lower cholesterol levels via the competitive inhibition of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). In addition, the pleiotropic anti-inflammatory effects of statins on T cells make them attractive as therapeutic drugs in T-cell-driven autoimmune disorders. Since statins do not exclusively target HMGCR and thus might have varying effects on different cell types, we generated a new mouse strain allowing for the tissue-specific deletion of HMGCR.
View Article and Find Full Text PDFCaspases are key enzymes responsible for mediating apoptotic cell death. Across species, caspase-2 is the most conserved caspase and stands out due to unique features. Apart from cell death, caspase-2 also regulates autophagy, genomic stability and ageing.
View Article and Find Full Text PDFThe inhibitors of apoptosis (IAPs) constitute a family of proteins involved in the regulation of various cellular processes, including cell death, immune and inflammatory responses, cell proliferation, cell differentiation, and cell motility. There is accumulating evidence supporting IAP-targeting in tumors: IAPs regulate various cellular processes that contribute to tumor development, such as cell death, cell proliferation, and cell migration; their expression is increased in a number of human tumor samples, and IAP overexpression has been correlated with tumor growth, and poor prognosis or low response to treatment; and IAP expression can be rapidly induced in response to chemotherapy or radiotherapy because of the presence of an internal ribosome entry site (IRES)-dependent mechanism of translation initiation, which could contribute to resistance to antitumor therapy. The development of IAP antagonists is an important challenge and was subject to intense research over the past decade.
View Article and Find Full Text PDFMOZ and MLL encoding a histone acetyltransferase and a histone methyltransferase, respectively, are targets for recurrent chromosomal translocations found in acute myeloblastic or lymphoblastic leukemia. We have previously shown that MOZ and MLL cooperate to activate HOXA9 gene expression in hematopoietic stem/progenitors cells. To dissect the mechanism of action of this complex, we decided to identify new proteins interacting with MOZ.
View Article and Find Full Text PDFInhibitors of Apoptosis (IAPs) are a family of proteins with various biological functions including regulation of innate immunity and inflammation, cell proliferation, cell migration and apoptosis. They are characterized by the presence of at least one N-terminal baculoviral IAP repeat (BIR) domain involved in protein-protein interaction. Most of them also contain a C-terminal RING domain conferring an E3-ubiquitin ligase activity.
View Article and Find Full Text PDFThe function of IAP has long been limited to an inhibition of apoptosis through their capacity to bind some caspases. Since the expression of these proteins is altered in some tumor samples, IAPs are targets for anticancer therapy and many small molecules have been designed for their capacity to inhibit IAP-caspase interaction. Unexpectedly, these molecules appeared to significantly affect NF-κB activation.
View Article and Find Full Text PDFCells are constantly exposed to endogenous and exogenous cellular injuries. They cope with stressful stimuli by adapting their metabolism and activating various "guardian molecules." These pro-survival factors protect essential cell constituents, prevent cell death, and possibly repair cellular damages.
View Article and Find Full Text PDFThe inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor.
View Article and Find Full Text PDF