Phosphorus (P) removal from the domestic wastewater is required to counter the eutrophication in receiving water bodies and is mandated by the regulatory frameworks in several countries with discharge limits within 1-2mgPL. Operating at higher sludge retention time (SRT) and higher biomass concentration than the conventional activated sludge process (CASP), membrane bioreactors (MBRs) are able to remove 70-98% phosphorus without addition of coagulant. In full-scale facilities, enhanced biological phosphorus removal (EBPR) is assisted by the addition of metal coagulant to ensure >95% P-removal.
View Article and Find Full Text PDFNitrifying biologically active filters (BAFs) have been found to be high emitters of nitrous oxide (NO), a powerful greenhouse gas contributing to ozone layer depletion. While recent models have greatly improved our understanding of the triggers of NO emissions from suspended-growth processes, less is known about NO emissions from full-scale biofilm processes. Tertiary nitrifying BAFs have been modeled at some occasions but considering strong simplifications on the description of gas-liquid exchanges which are not appropriate for NO prediction.
View Article and Find Full Text PDFThis short communication briefly presents a rapid method using a fluorescent redox indicator, similar to resazurin, in order to estimate the biodegradability of sewage sludge during anaerobic digestion (AD). The biodegradability and by extension the Biochemical Methane Potential (BMP) of nineteen municipal sludge samples (primary, biological and tertiary) were investigated and estimated in only 48 h. Results showed the relevance to follow the metabolic activity of anaerobic sludge by the kinetic of probe reduction.
View Article and Find Full Text PDFThe headloss prediction capability of a wastewater biofiltration model is evaluated on data from a full-scale tertiary nitrifying biofilter unit located in the Paris conurbation (Achères, France; 6,000,000 population equivalent). The model has been previously calibrated on nutrient conversion and TSS filtration observations. In this paper the mass of extracted biofilm during biofilter backwash and the headloss value at the start of an operation cycle are first calibrated on sludge production estimations and relative pressure measurements over the year 2009.
View Article and Find Full Text PDFBioprocess Biosyst Eng
February 2014
A wastewater biofiltration model is used to assess its capacity to reproduce the treatment behaviour of a plant-sized tertiary nitrifying biofilter unit. It is calibrated on two different types of datasets collected at the Seine-Aval biofiltration plant (Achères, France): grab samples at several heights inside the media bed and a long-term daily plant monitoring over a 1-year period. The model parameters are first calibrated to fit the dynamics observed in the media bed, after which the model is compared to the second dataset.
View Article and Find Full Text PDFNitrous oxide (N2O) is a major greenhouse gas, heavily contributing to global warming. N2O is emitted from various sources such as wastewater treatment plants, during the nitrification and denitrification steps. ASM models, which are commonly used in wastewater treatment, usually consider denitrification as a one-step process (NO3- directly reduced to N2) and are as such unable to provide values for intermediate products of the reaction like N2O.
View Article and Find Full Text PDFThree salen-Mn(II) complexes bearing hydroxyl groups in either the ortho, para or meta positions have been synthesized and the structures of the metal complexes and their potential to produce free radicals investigated by electron spin resonance (ESR) and X-ray absorption near edge structures (XANES) spectroscopy. All three compounds were shown to generate a high level of superoxide anions in dimethyl sulfoxide (DMSO) solution. The production of oxygen radicals results from a one electron process oxidation of Mn(II) species leading to the formation Mn(III) redox state species, as revealed by a higher XANES edge energy of 2.
View Article and Find Full Text PDFThe influence of first-pass splanchnic metabolism was investigated by comparing the response of 5 lactating cows to an infusion of an amino acid mixture into the abomasum or a jugular vein over 5 d according to a complete block design. The basal diet and the amino acid infusion provided 71% and 14% of crude protein requirements, respectively. The jugular infusion increased (P = 0.
View Article and Find Full Text PDF