Polycomb (Pc) group proteins are transcriptional regulators with key roles in development, cell identity, and differentiation. Pc-bound chromatin regions form repressive domains that interact in 3D to assemble repressive nuclear compartments. Here, we use multiplexed chromatin imaging to investigate whether Pc compartments involve the clustering of multiple Pc domains during Drosophila development.
View Article and Find Full Text PDFThe simultaneous observation of three-dimensional (3D) chromatin structure and transcription in single cells is critical to understand how DNA is organized inside cells and how this organization influences or is affected by other processes, such as transcription. We have recently introduced an innovative technology known as Hi-M, which enables the sequential tagging, 3D visualization, and precise localization of multiple genomic DNA regions alongside RNA expression within individual cells. In this chapter, we present a comprehensive guide outlining the creation of probes, as well as sample preparation and labeling.
View Article and Find Full Text PDFGenome-wide ensemble sequencing methods improved our understanding of chromatin organization in eukaryotes but lack the ability to capture single-cell heterogeneity and spatial organization. To overcome these limitations, new imaging-based methods have emerged, giving rise to the field of spatial genomics. Here, we present pyHiM, a user-friendly python toolbox specifically designed for the analysis of multiplexed DNA-FISH data and the reconstruction of chromatin traces in individual cells.
View Article and Find Full Text PDFIn mammals, insulators contribute to the regulation of loop extrusion to organize chromatin into topologically associating domains. In Drosophila the role of insulators in 3D genome organization is, however, under current debate. Here, we addressed this question by combining bioinformatics analysis and multiplexed chromatin imaging.
View Article and Find Full Text PDFMany species, such as fish schools or bird flocks, rely on collective motion to forage, prey, or escape predators. Likewise, Myxococcus xanthus forages and moves collectively to prey and feed on other bacterial species. These activities require two distinct motility machines enabling adventurous (A) and social (S) gliding, however when and how these mechanisms are used has remained elusive.
View Article and Find Full Text PDFCells maintain a constant dialog between the extracellular matrix and their plasma membrane to fine tune signal transduction processes. We found that the receptor kinase FERONIA (FER), which is a proposed cell wall sensor, modulates phosphatidylserine plasma membrane accumulation and nano-organization, a key regulator of Rho GTPase signaling in Arabidopsis. We demonstrate that FER is required for both Rho-of-Plant 6 (ROP6) nano-partitioning at the membrane and downstream production of reactive oxygen species upon hyperosmotic stimulus.
View Article and Find Full Text PDFThe predatory deltaproteobacterium Myxococcus xanthus uses a helically-trafficked motor at bacterial focal-adhesion (bFA) sites to power gliding motility. Using total internal reflection fluorescence and force microscopies, we identify the von Willebrand A domain-containing outer-membrane (OM) lipoprotein CglB as an essential substratum-coupling adhesin of the gliding transducer (Glt) machinery at bFAs. Biochemical and genetic analyses reveal that CglB localizes to the cell surface independently of the Glt apparatus; once there, it is recruited by the OM module of the gliding machinery, a heteroligomeric complex containing the integral OM β barrels GltA, GltB, and GltH, as well as the OM protein GltC and OM lipoprotein GltK.
View Article and Find Full Text PDFThe spatial organization of chromatin at the scale of topologically associating domains (TADs) and below displays large cell-to-cell variations. Up until now, how this heterogeneity in chromatin conformation is shaped by chromatin condensation, TAD insulation, and transcription has remained mostly elusive. Here, we used Hi-M, a multiplexed DNA-FISH imaging technique providing developmental timing and transcriptional status, to show that the emergence of TADs at the ensemble level partially segregates the conformational space explored by single nuclei during the early development of Drosophila embryos.
View Article and Find Full Text PDFMultiplexed sequential and combinatorial imaging enables the simultaneous detection of multiple biological molecules, proteins, DNA, or RNA, enabling single-cell spatial multi-omics measurements at sub-cellular resolution. Recently, we designed a multiplexed imaging approach (Hi-M) to study the spatial organization of chromatin in single cells. In order to enable Hi-M sequential imaging on custom microscope setups, we developed Qudi-HiM, a modular software package written in Python 3.
View Article and Find Full Text PDFStudies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality.
View Article and Find Full Text PDFAcquisition of cell fate is thought to rely on the specific interaction of remote cis-regulatory modules (CRMs), for example, enhancers and target promoters. However, the precise interplay between chromatin structure and gene expression is still unclear, particularly within multicellular developing organisms. In the present study, we employ Hi-M, a single-cell spatial genomics approach, to detect CRM-promoter looping interactions within topologically associating domains (TADs) during early Drosophila development.
View Article and Find Full Text PDFSuper-resolution microscopy techniques have pushed the limit of optical imaging to unprecedented spatial resolutions. However, one of the frontiers in nanoscopy is its application to intact living organisms. Here we describe the implementation and application of super-resolution single-particle tracking photoactivated localization microscopy (sptPALM) to probe single-molecule dynamics of membrane proteins in live roots of the model plant Arabidopsis thaliana.
View Article and Find Full Text PDFIn the course of their growth and development, plants have to constantly perceive and react to their environment. This is achieved in cells by the coordination of complex combinatorial signaling networks. However, how signal integration and specificity are achieved in this context is unknown.
View Article and Find Full Text PDFIn budding yeast, the transcription factors SBF and MBF activate a large program of gene expression in late G1 phase that underlies commitment to cell division, termed Start. SBF/MBF are limiting with respect to target promoters in small G1 phase cells and accumulate as cells grow, raising the questions of how SBF/MBF are dynamically distributed across the G1/S regulon and how this impacts the Start transition. Super-resolution Photo-Activatable Localization Microscopy (PALM) mapping of the static positions of SBF/MBF subunits in fixed cells revealed each transcription factor was organized into discrete clusters containing approximately eight copies regardless of cell size and that the total number of clusters increased as cells grew through G1 phase.
View Article and Find Full Text PDFSimultaneous observation of 3D chromatin organization and transcription at the single-cell level and with high spatial resolution may hold the key to unveiling the mechanisms regulating embryonic development, cell differentiation and even disease. We recently developed Hi-M, a technology that enables the sequential labeling, 3D imaging and localization of multiple genomic DNA loci, together with RNA expression, in single cells within whole, intact Drosophila embryos. Importantly, Hi-M enables simultaneous detection of RNA expression and chromosome organization without requiring sample unmounting and primary probe rehybridization.
View Article and Find Full Text PDFRho guanosine triphosphatases (GTPases) are master regulators of cell signaling, but how they are regulated depending on the cellular context is unclear. We found that the phospholipid phosphatidylserine acts as a developmentally controlled lipid rheostat that tunes Rho GTPase signaling in Live superresolution single-molecule imaging revealed that the protein Rho of Plants 6 (ROP6) is stabilized by phosphatidylserine into plasma membrane nanodomains, which are required for auxin signaling. Our experiments also revealed that the plasma membrane phosphatidylserine content varies during plant root development and that the level of phosphatidylserine modulates the quantity of ROP6 nanoclusters induced by auxin and hence downstream signaling, including regulation of endocytosis and gravitropism.
View Article and Find Full Text PDFEukaryotic chromosomes are organized in multiple scales, from nucleosomes to chromosome territories. Recently, genome-wide methods identified an intermediate level of chromosome organization, topologically associating domains (TADs), that play key roles in transcriptional regulation. However, these methods cannot directly examine the interplay between transcriptional activation and chromosome architecture while maintaining spatial information.
View Article and Find Full Text PDFPhysiological acclimation of plants to an everchanging environment is governed by complex combinatorial signaling networks that perceive and transduce various abiotic and biotic stimuli. Reactive oxygen species (ROS) serve as one of the second messengers in plant responses to hyperosmotic stress. The molecular bases of ROS production and the primary cellular processes that they target were investigated in the Arabidopsis () root.
View Article and Find Full Text PDFWith single-molecule localization microscopy (SMLM) it is possible to reveal the internal composition, architecture, and dynamics of molecular machines and large cellular complexes. SMLM remains technically challenging, and frequently its implementation requires tailored experimental conditions that depend on the complexity of the subcellular structure of interest. Here, we describe two simple, robust, and high-throughput protocols to study molecular motors and machineries responsible for chromosome transport and organization in bacteria using 2D- and 3D-SMLM.
View Article and Find Full Text PDFAt the kilo- to megabase pair scales, eukaryotic genomes are partitioned into self-interacting modules or topologically associated domains (TADs) that associate to form nuclear compartments. Here, we combine high-content super-resolution microscopies with state-of-the-art DNA-labeling methods to reveal the variability in the multiscale organization of the Drosophila genome. We find that association frequencies within TADs and between TAD borders are below ~10%, independently of TAD size, epigenetic state, or cell type.
View Article and Find Full Text PDFSuperresolution light microscopy allows the imaging of labeled supramolecular assemblies at a resolution surpassing the classical diffraction limit. A serious limitation of the superresolution approach is sample heterogeneity and the stochastic character of the labeling procedure. To increase the reproducibility and the resolution of the superresolution results, we apply multivariate statistical analysis methods and 3D reconstruction approaches originally developed for cryogenic electron microscopy of single particles.
View Article and Find Full Text PDFMultifocus microscopy (MFM) allows sensitive and fast three-dimensional imaging. It relies on the efficient design of diffraction phase gratings yielding homogeneous intensities in desired diffraction orders. Such performances are however guaranteed only for a specific wavelength.
View Article and Find Full Text PDFVarious rod-shaped bacteria mysteriously glide on surfaces in the absence of appendages such as flagella or pili. In the deltaproteobacterium Myxococcus xanthus, a putative gliding motility machinery (the Agl-Glt complex) localizes to so-called focal adhesion sites (FASs) that form stationary contact points with the underlying surface. Here we show that the Agl-Glt machinery contains an inner-membrane motor complex that moves intracellularly along a right-handed helical path; when the machinery becomes stationary at FASs, the motor complex powers a left-handed rotation of the cell around its long axis.
View Article and Find Full Text PDFPrecise and rapid DNA segregation is required for proper inheritance of genetic material. In most bacteria and archaea, this process is assured by a broadly conserved mitotic-like apparatus in which a NTPase (ParA) displaces the partition complex. Competing observations and models imply starkly different 3D localization patterns of the components of the partition machinery during segregation.
View Article and Find Full Text PDFWe have developed a 3D super-resolution microscopy method that enables deep imaging in cells. This technique relies on the effective combination of multifocus microscopy and astigmatic 3D single-molecule localization microscopy. We describe the optical system and the fabrication process of its key element, the multifocus grating.
View Article and Find Full Text PDF