Publications by authors named "Jean Bastin"

Cachexia is a systemic wasting condition associated to advanced phases of many cancers, which contributes to significant morbidity and mortality. It is mainly characterized by involuntary weight loss due to muscle wasting often associated with loss of adipose tissue, possibly leading to inanition and death, without treatment to date. Symptomatology covers a complex array of disorders (fatigue, inflammation, pain, anorexia, depression) related to multisystemic impairments progressively affecting numerous organs and tissues (muscle, adipose tissue, brain, immune system, gastrointestinal tract).

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) can be classified into four molecular subtypes (CMS) among which CMS1 is associated with the best prognosis, while CMS4, the mesenchymal subtype, has the worst outcome. Although mitochondria are considered to be hubs of numerous signaling pathways, the study of mitochondrial metabolism has been neglected for many years. Mitochondrial Complex I (CI) plays a dual role, both in energy and reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Patients with autism spectrum disorder (ASD) may have an increase in blood acyl-carnitine (AC) concentrations indicating a mitochondrial fatty acid β-oxidation (mtFAO) impairment. However, there are no data on systematic mtFAO analyses in ASD. We analyzed tritiated palmitate oxidation rates in fibroblasts from patients with ASD before and after resveratrol (RSV) treatment, according to methods used for the diagnosis of congenital defects in mtFAO.

View Article and Find Full Text PDF

Inherited fatty acid oxidation diseases in their mild forms often present as metabolic myopathies. Carnitine Palmitoyl Transferase 2 (CPT2) deficiency, one such prototypical disorder is associated with compromised myotube differentiation. Here, we show that CPT2-deficient myotubes exhibit defects in focal adhesions and redox balance, exemplified by increased SOD2 expression.

View Article and Find Full Text PDF

Mitochondria have emerged as key actors of innate and adaptive immunity. Mitophagy has a pivotal role in cell homeostasis, but its contribution to macrophage functions and host defense remains to be delineated. Here, we showed that lipopolysaccharide (LPS) in combination with IFN-γ inhibited PINK1-dependent mitophagy in macrophages through a STAT1-dependent activation of the inflammatory caspases 1 and 11.

View Article and Find Full Text PDF

Spinal Muscular Atrophy (SMA), an autosomal recessive neurodegenerative disease characterized by the loss of spinal-cord motor-neurons, is caused by mutations on Survival-of-Motor Neuron (SMN)-1 gene. The expression of 2, a gene copy, partially compensates for disruption due to exon-7 excision in 90% of transcripts subsequently explaining the strong clinical heterogeneity. Several alterations in energy metabolism, like glucose intolerance and hyperlipidemia, have been reported in SMA at both systemic and cellular level, prompting questions about the potential role of energy homeostasis and/or production involvement in disease progression.

View Article and Find Full Text PDF

Dysfunctions of mitochondrial fatty acid ß-oxidation (ß-FAO) in various tissues represent a hallmark of many common disorders, and are acknowledged to play an essential role in the pathogenesis of diabetes, obesity, and cardiac diseases. Moreover, inborn defects in ß-FAO form a large family of rare diseases with variable phenotypes, ranging from fatal multi-organ failure in the newborn to isolated adult onset myopathy. These pathologies highlight the critical role of ß-FAO in many tissues with high-energy demand (heart, muscle, liver, kidney).

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by defective social communication and interaction and restricted, repetitive behavior with a complex, multifactorial etiology. Despite an increasing worldwide prevalence of ASD, there is currently no pharmacological cure to treat core symptoms of ASD. Clinical evidence and molecular data support the role of impaired mitochondrial fatty acid oxidation (FAO) in ASD.

View Article and Find Full Text PDF

Mitochondrial fatty acid oxidation (FAO) and respiratory chain (RC) defects form a large group of inherited monogenic disorders sharing many common clinical and pathophysiological features, including disruption of mitochondrial bioenergetics, but also, for example, oxidative stress and accumulation of noxious metabolites. Interestingly, several transcription factors or co-activators exert transcriptional control on both FAO and RC genes, and can be activated by small molecules, opening to possibly common therapeutic approaches for FAO and RC deficiencies. Here, we review recent data on the potential of various drugs or small molecules targeting pivotal metabolic regulators: peroxisome proliferator activated receptors (PPARs), sirtuin 1 (SIRT1), AMP-activated protein kinase (AMPK), and protein kinase A (PKA)) or interacting with reactive oxygen species (ROS) signaling, to alleviate or to correct inborn FAO or RC deficiencies in cellular or animal models.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is currently diagnosed according to behavioral criteria. Biomarkers that identify children with ASD could lead to more accurate and early diagnosis. ASD is a complex disorder with multifactorial and heterogeneous etiology supporting recognition of biomarkers that identify patient subsets.

View Article and Find Full Text PDF

Resveratrol (RSV) is a small compound first identified as an activator of sirtuin 1 (SIRT1), a key factor in mediating the effects of caloric restriction. Since then, RSV received great attention for its widespread beneficial effects on health and in connection to many diseases. RSV improves the metabolism and the mitochondrial function, and more recently it was shown to restore fatty acid β-oxidation (FAO) capacities in patient fibroblasts harboring mutations with residual enzyme activity.

View Article and Find Full Text PDF

Carnitine palmitoyl transferase 2 (CPT2) deficiency is one of the most common inherited fatty acid oxidation (FAO) defects and represents a prototypical mitochondrial metabolic myopathy. Recent studies have suggested a pivotal role of adenosine monophosphate-activated protein kinase (AMPK) in skeletal muscle plasticity and mitochondrial homeostasis. Thus, we tested the potential of GSK773, a novel direct AMPK activator, to improve or correct FAO capacities in muscle cells from patients harboring various mutations.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) modify proteins and lipids leading to deleterious outcomes. Thus, maintaining their homeostatic levels is vital. This study highlights the endogenous role of LXRs (LXRα and β) in the regulation of oxidative stress in peripheral nerves.

View Article and Find Full Text PDF

Carnitine palmitoyltransferase-2 () is a mitochondrial enzyme involved in long-chain fatty acid entry into mitochondria for their β-oxidation and energy production. Two phenotypes are associated with the extremely reduced activity in genetically deficient patients: neonatal lethality or, in milder forms, myopathy. Resveratrol (RSV) is a phytophenol produced by grape plant in response to biotic or abiotic stresses that displays anti-oxidant properties, in particular through AP-1, NFκB, STAT-3, and COX pathways.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis is an adult-onset neurodegenerative disease characterized by the specific loss of motor neurons, leading to muscle paralysis and death. Although the cellular mechanisms underlying amyotrophic lateral sclerosis (ALS)-induced toxicity for motor neurons remain poorly understood, growing evidence suggest a defective energetic metabolism in skeletal muscles participating in ALS-induced motor neuron death ultimately destabilizing neuromuscular junctions. In the present study, we report that a specific exercise paradigm, based on a high intensity and amplitude swimming exercise, significantly improves glucose metabolism in ALS mice.

View Article and Find Full Text PDF

Resveratrol is a natural polyphenolic compound produced by plants under various stress conditions. Resveratrol has been reported to exhibit antioxidant, anti-inflammatory, and anti-proliferative properties in mammalian cells and animal models, and might therefore exert pleiotropic beneficial effects in different pathophysiological states. More recently, resveratrol has also been shown to potentially target many mitochondrial metabolic pathways, including fatty acid β-oxidation or oxidative phosphorylation, leading to the up-regulation of the energy metabolism via signaling pathways involving PGC-1α, SIRT1, and/or AMP-kinase, which are not yet fully delineated.

View Article and Find Full Text PDF

The pathophysiological mechanisms underlying Complex I (CI) deficiencies are understood only partially which severely limits the treatment of this common, devastating, mitochondrial disorder. Recently, we have shown that resveratrol (RSV), a natural polyphenol, has beneficial effects on CI deficiency of nuclear origin. Here, we demonstrate that RSV is able to correct the biochemical defect in oxygen consumption in five of thirteen CI-deficient patient cell lines.

View Article and Find Full Text PDF

This review presents recent evidence implicating microRNAs (miRNAs) in the beneficial effects of resveratrol (trihydroxystilbene), a nonflavonoid plant polyphenol, with emphasis on its anti-inflammatory effects. Many diseases and pathologies have been linked, directly or indirectly, to inflammation. These include infections, injuries, atherosclerosis, diabetes mellitus, obesity, cancer, osteoarthritis, age-related macular degeneration, demyelination, and neurodegenerative diseases.

View Article and Find Full Text PDF

Mitochondrial trifunctional protein (MTP) deficiency caused by HADHA or HADHB gene mutations exhibits substantial molecular, biochemical, and clinical heterogeneity and ranks among the more severe fatty acid oxidation (FAO) disorders, without pharmacological treatment. Since bezafibrate has been shown to potentially correct other FAO disorders in patient cells, we analyzed its effects in 26 MTP-deficient patient fibroblasts representing 16 genotypes. Overall, the patient cell lines exhibited variable, complex, biochemical profiles and pharmacological responses.

View Article and Find Full Text PDF

Very long acyl-CoA dehydrogenase (VLCAD) deficiency is a genetic pediatric disorder presenting with a spectrum of phenotypes that remains for the most part untreatable. Here, we present a novel strategy for the correction of VLCAD deficiency by increasing mutant VLCAD enzymatic activity. Treatment of VLCAD-deficient fibroblasts, which express distinct mutant VLCAD protein and exhibit deficient fatty acid β-oxidation, with S-nitroso-N-acetylcysteine induced site-specific S-nitrosylation of VLCAD mutants at cysteine residue 237.

View Article and Find Full Text PDF

Scope: High-fat diet (HFD) increases visceral adipose tissue (AT). Our aim was to evaluate whether citrulline (CIT) affected nonesterified fatty acid (NEFA) metabolism in AT from HFD-fed rats.

Methods And Results: Rats were fed for 8 weeks with either a control diet (CD) or HFD.

View Article and Find Full Text PDF

Scope: During aging, increased visceral adipose tissue (AT) mass may result in impaired metabolic status. A citrulline (CIT)-supplemented diet reduces AT mass in old rats. We hypothesized that CIT could directly affect fatty acid (FA) metabolism in retroperitoneal AT.

View Article and Find Full Text PDF

Background: Inborn enzyme defects of mitochondrial fatty acid beta-oxidation (FAO) form a large group of genetic disorders associated to variable clinical presentations ranging from life-threatening pediatric manifestations up to milder late onset phenotypes, including myopathy. Very few candidate drugs have been identified in this group of disorders. Resveratrol (RSV) is a natural polyphenol with anti-oxidant and anti-inflammatory effects, recently shown to have beneficial metabolic properties in mice models.

View Article and Find Full Text PDF