Publications by authors named "Jean Baptiste Durand"

In humans, the eye pupils respond to both physical light sensed by the retina and mental representations of light produced by the brain. Notably, our pupils constrict when a visual stimulus is illusorily perceived brighter, even if retinal illumination is constant. However, it remains unclear whether such perceptual penetrability of pupil responses is an epiphenomenon unique to humans or whether it represents an adaptive mechanism shared with other animals to anticipate variations in retinal illumination between successive eye fixations.

View Article and Find Full Text PDF

An observer willing to cross a street must first estimate if the approaching cars offer enough time to safely complete the task. The brain areas supporting this perception, known as Time-To-Contact (TTC) perception, have been mainly studied through noninvasive correlational approaches. We carried out an experiment in which patients were tested during an awake brain surgery electrostimulation mapping to examine the causal implication of various brain areas in the street-crossing decision process.

View Article and Find Full Text PDF

Our objective is to analyze scanpaths acquired through participants achieving a reading task aiming at answering a binary question: Is the text related or not to some given target topic? We propose a data-driven method based on hidden semi-Markov chains to segment scanpaths into phases deduced from the model states, which are shown to represent different cognitive strategies: normal reading, fast reading, information search, and slow confirmation. These phases were confirmed using different external covariates, among which semantic information extracted from texts. Analyses highlighted some strong preference of specific participants for specific strategies and more globally, large individual variability in eye-movement characteristics, as accounted for by random effects.

View Article and Find Full Text PDF

Neurophysiological investigations over the past decades have demonstrated the involvement of the primate insula in a wide array of sensory, cognitive, affective and regulatory functions, yet the complex functional organization of the insula remains unclear. Here we examined to what extent non-invasive task-based and resting-state fMRI provides support for functional specialization and integration of sensory and motor information in the macaque insula. Task-based fMRI experiments suggested a functional specialization related to processing of ingestive/taste/distaste information in anterior insula, grasping-related sensorimotor responses in middle insula and vestibular information in posterior insula.

View Article and Find Full Text PDF

Non-human primate (NHP) neuroimaging can provide essential insights into the neural basis of human cognitive functions. While functional magnetic resonance imaging (fMRI) localizers can play an essential role in reaching this objective (Russ et al., 2021), they often differ substantially across species in terms of paradigms, measured signals, and data analysis, biasing the comparisons.

View Article and Find Full Text PDF

Symmetry is a highly salient feature of the natural world that is perceived by many species. In humans, the cerebral areas processing symmetry are now well identified from neuroimaging measurements. Macaque could constitute a good animal model to explore the underlying neural mechanisms, but a previous comparative study concluded that functional magnetic resonance imaging responses to mirror symmetry in this species were weaker than those observed in humans.

View Article and Find Full Text PDF

As we plan to reach or manipulate objects, we generally orient our body so as to face them. Other objects occupying the same portion of space will likely represent potential obstacles for the intended action. Thus, either as targets or as obstacles, the objects located straight in front of us are often endowed with a special behavioral status.

View Article and Find Full Text PDF

Time-to-contact (TTC) perception refers to the ability of an observer to estimate the remaining time before an object reaches a point in the environment, and is of crucial importance in daily life. Noninvasive correlational approaches have identified several brain areas sensitive to TTC information. Here we report the results of two studies, including one during an awake brain surgery, that aimed to identify the specific areas causally engaged in the TTC estimation process.

View Article and Find Full Text PDF

We investigated the visuotopic organization of macaque posterior parietal cortex (PPC) by combining functional imaging (fMRI) and wide-field retinotopic mapping in two macaque monkeys. Whole brain blood-oxygen-level-dependent (BOLD) signal was recorded while monkeys maintained central fixation during the presentation of large rotating wedges and expending/contracting annulus of a "shaking" fruit basket, designed to maximize the recruitment of PPC neurons. Results of the surface-based population receptive field (pRF) analysis reveal a new cluster of four visuotopic areas at the confluence of the parieto-occipital and intra-parietal sulci, in a location previously defined histologically and anatomically as the posterior intra-parietal (PIP) region.

View Article and Find Full Text PDF

Key Points: We performed a prospective electrostimulation study of the motor homunculus in 100 patients without motor deficit or brain lesion in the precentral gyrus in order to acquire accurate Montreal Neurological Institute (MNI) coordinates of the functional areas. The analysis of 248 body coordinates in the precentral gyrus showed rare inter-individual variations in the medial-to-lateral somatotopic movement organization with quite similar intensity thresholds. Electrostimulation only induced basic and stereotyped movements.

View Article and Find Full Text PDF

The cortical areas that process disparity-defined motion-in-depth (i.e., cyclopean stereomotion [CSM]) were characterized with functional magnetic resonance imaging (fMRI) in two awake, behaving macaques.

View Article and Find Full Text PDF

The objects located straight-ahead of the body are preferentially processed by the visual system. They are more rapidly detected and evoke stronger BOLD responses in early visual areas than elements that are retinotopically identical but located at eccentric spatial positions. To characterize the dynamics of the underlying neural mechanisms, we recorded in 29 subjects the EEG responses to peripheral targets differing solely by their locations with respect to the body.

View Article and Find Full Text PDF

Objective: The purpose of this study was to characterize the reproducibility of language trials within and between brain mapping sessions.

Methods: Brain mapping and baseline testing data from 200 adult patients who underwent resection of left-hemisphere tumors were evaluated. Data from 11 additional patients who underwent a second resection for recurrence were analyzed separately to investigate reproducibility over time.

View Article and Find Full Text PDF

Art experts have argued that the mirror reversal of pictorial artworks produces an alteration of their spatial content. However, this putative asymmetry of the pictorial space remains to be empirically proved and causally explained. Here, we address these issues with the "corridor illusion," a size illusion triggered by the pictorial space of a receding corridor.

View Article and Find Full Text PDF

Whether reward can accentuate the perception of visual objects, that is, makes them appear larger than they really are, is a long-standing and controversial question. Here, we revisit this issue with a novel two-alternative forced-choice paradigm combining asymmetric reward schedule and task reversal. In a first experiment, participants (n = 27) choose the larger of two unequally rewarded objects in some sessions and the smaller one in other sessions.

View Article and Find Full Text PDF

Key Points: We performed a prospective electrostimulation study, based on 50 operated intact patients, to acquire accurate MNI coordinates of the functional areas of the somatosensory homunculus. In the contralateral BA1, the hand representation displayed not only medial-to-lateral, little-finger-to-thumb, but also rostral-to-caudal discrete somatotopy, with the tip of each finger located more caudally than the proximal phalanx. The analysis of the MNI body coordinates showed rare inter-individual variations in the medial-to-lateral somatotopic organization in these patients with rather different intensity thresholds needed to elicit sensations in different body parts.

View Article and Find Full Text PDF

Irregular flowering over years is commonly observed in fruit trees. The early prediction of tree behavior is highly desirable in breeding programmes. This study aims at performing such predictions, combining simplified phenotyping and statistics methods.

View Article and Find Full Text PDF

The cortical network that processes visual cues to self-motion was characterized with functional magnetic resonance imaging in 3 awake behaving macaques. The experimental protocol was similar to previous human studies in which the responses to a single large optic flow patch were contrasted with responses to an array of 9 similar flow patches. This distinguishes cortical regions where neurons respond to flow in their receptive fields regardless of surrounding motion from those that are sensitive to whether the overall image arises from self-motion.

View Article and Find Full Text PDF

Water stress (WS) generates a number of physiological and morphological responses in plants that depend on the intensity and duration of stress as well as the plant species and development stage. In perennial plants, WS may affect plant development through cumulative effects that modify plant functions, architecture and production over time. Plant architecture depends on the fate of the terminal and axillary buds that can give rise, in the particular case of apple, to reproductive or vegetative growth units (GUs) of different lengths.

View Article and Find Full Text PDF

OBJECTIVE Electrostimulation in awake brain mapping is widely used to guide tumor removal, but methodologies can differ substantially across institutions. The authors studied electrostimulation brain mapping data to characterize the variability of the current intensity threshold across patients and the effect of its variations on the number, type, and surface area of the essential language areas detected. METHODS Over 7 years, the authors prospectively studied 100 adult patients who were undergoing intraoperative brain mapping during resection of left hemisphere tumors.

View Article and Find Full Text PDF

We present a novel kind of directional axon guides for brain-on-a-chip applications. Contrarily to previous works, the directionality in our design is created by rerouting axons growing in the unwanted direction back to their original compartment while leaving the other growth direction unaffected. This design yields state-of-the-art levels of directionality without the disadvantages of previously reported technologies.

View Article and Find Full Text PDF

Ocular saccades bringing the gaze toward the straight-ahead direction (centripetal) exhibit higher dynamics than those steering the gaze away (centrifugal). This is generally explained by oculomotor determinants: centripetal saccades are more efficient because they pull the eyes back toward their primary orbital position. However, visual determinants might also be invoked: elements located straight-ahead trigger saccades more efficiently because they receive a privileged visual processing.

View Article and Find Full Text PDF

In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks.

View Article and Find Full Text PDF

Cortical electrical stimulation mapping was used to study neural substrates of the function of writing in the temporoparietal cortex. We identified the sites involved in oral language (sentence reading and naming) and writing from dictation, in order to spare these areas during removal of brain tumours in 30 patients (23 in the left, and 7 in the right hemisphere). Electrostimulation of the cortex impaired writing ability in 62 restricted cortical areas (.

View Article and Find Full Text PDF