Neutrophils, major regulator of innate immunity have recently emerged as key components of the tumor microenvironment. The role of neutrophils in cancer has been linked to their ability to form neutrophil extracellular traps (NETs), structures composed of decondensed DNA decorated with enzymes that are released into the extracellular space. Here, we discuss the pivotal roles of NETs, in influencing responses to chemotherapy and its severe adverse effect.
View Article and Find Full Text PDFNeutrophils, major regulators of innate immunity, have recently emerged as key components of the tumor microenvironment. The role of neutrophils in cancer has been linked to their ability to form neutrophil extracellular traps (NETs), structures composed of decondensed DNA decorated with enzymes that are released into the extracellular space. Here, we discuss the pivotal roles of NETs in influencing responses to anticancer therapies such as chemotherapy, radiotherapy, immunotherapy, and targeted therapy.
View Article and Find Full Text PDFChemotherapy, which primarily acts on cancer cells, can influence the tumor microenvironment and the recruitment and behavior of stromal cells. In this issue of the JCI, Li et al. explored the potent anticancer effect of the combination of a glutaminase inhibitor (CB-839) and 5-FU against PIK3CA-mutant colorectal cancer tumors.
View Article and Find Full Text PDFChronic stress is associated with increased risk of metastasis and poor survival in cancer patients, yet the reasons are unclear. We show that chronic stress increases lung metastasis from disseminated cancer cells 2- to 4-fold in mice. Chronic stress significantly alters the lung microenvironment, with fibronectin accumulation, reduced T cell infiltration, and increased neutrophil infiltration.
View Article and Find Full Text PDFMetastasis is the major cause of cancer death, and the development of therapy resistance is common. The tumor microenvironment can confer chemotherapy resistance (chemoresistance), but little is known about how specific host cells influence therapy outcome. We show that chemotherapy induces neutrophil recruitment and neutrophil extracellular trap (NET) formation, which reduces therapy response in mouse models of breast cancer lung metastasis.
View Article and Find Full Text PDFCancer immunotherapies, including adoptive T cell transfer, can be ineffective because tumors evolve to display antigen-loss-variant clones. Therapies that activate multiple branches of the immune system may eliminate escape variants. Here, we show that melanoma-specific CD4 T cell therapy in combination with OX40 co-stimulation or CTLA-4 blockade can eradicate melanomas containing antigen escape variants.
View Article and Find Full Text PDFUnlabelled: Fibroblastic reticular cells (FRC) are immunologically specialized myofibroblasts that control the elasticity of the lymph node, in part through their contractile properties. Swelling of tumor-draining lymph nodes is a hallmark of lymphophilic cancers such as cutaneous melanoma. Melanoma displays high intratumoral heterogeneity with the coexistence of melanoma cells with variable differentiation phenotypes from melanocytic to dedifferentiated states.
View Article and Find Full Text PDFCancer cells from a primary tumor can disseminate to other tissues, remaining dormant and clinically undetectable for many years. Little is known about the cues that cause these dormant cells to awaken, resume proliferating, and develop into metastases. Studying mouse models, we found that sustained lung inflammation caused by tobacco smoke exposure or nasal instillation of lipopolysaccharide converted disseminated, dormant cancer cells to aggressively growing metastases.
View Article and Find Full Text PDFThe majority of patients with pancreatic ductal adenocarcinoma (PDA) develop metastatic disease after resection of their primary tumor. We found that livers from patients and mice with PDA harbor single disseminated cancer cells (DCCs) lacking expression of cytokeratin 19 (CK19) and major histocompatibility complex class I (MHCI). We created a mouse model to determine how these DCCs develop.
View Article and Find Full Text PDFNeutrophil extracellular traps (NETs) are critical for the clearance of large pathogens and are also implicated in thrombosis, autoimmunity, and cancer. In this issue of Developmental Cell, Amulic et al. (2017) show that the terminally differentiated, non-cycling neutrophils repurpose cell-cycle proteins and pathways to form NETs.
View Article and Find Full Text PDFActo-myosin contractility in carcinoma-associated fibroblasts leads to assembly of the tumor extracellular matrix. The pro-inflammatory cytokine LIF governs fibroblast activation in cancer by regulating the myosin light chain 2 activity. So far, however, how LIF mediates cytoskeleton contractility remains unknown.
View Article and Find Full Text PDFCarcinoma-associated fibroblasts (CAF) mediate the onset of a proinvasive tumour microenvironment. The proinflammatory cytokine LIF reprograms fibroblasts into a proinvasive phenotype, which promotes extracellular matrix remodelling and collective invasion of cancer cells. Here we unveil that exposure to LIF initiates an epigenetic switch leading to the constitutive activation of JAK1/STAT3 signalling, which results in sustained proinvasive activity of CAF.
View Article and Find Full Text PDFBASIGIN/CD147/EMMPRIN is a multifunctional transmembrane glycoprotein strongly expressed in tumours. BASIGIN controls tumour metabolism, particularly glycolysis by facilitating lactic acid export through the two monocarboxylate transporters MCT1 and hypoxia-inducible MCT4. However, before being recognized as a co-carrier of MCTs, BASIGIN was described as an inducer of extracellular matrix metalloproteases (MMPs).
View Article and Find Full Text PDFThe most critical stage in initiation of melanoma metastasis is the radial to vertical growth transition, yet the triggers of this transition remain elusive. We suggest that the microenvironment drives melanoma metastasis independently of mutation acquisition. Here we examined the changes in microenvironment that occur during melanoma radial growth.
View Article and Find Full Text PDFRounded-amoeboid cancer cells use actomyosin contractility driven by Rho-ROCK and JAK-STAT3 to migrate efficiently. It has been suggested that rounded-amoeboid cancer cells do not require matrix metalloproteinases (MMPs) to invade. Here we compare MMP levels in rounded-amoeboid and elongated-mesenchymal melanoma cells.
View Article and Find Full Text PDFSignaling crosstalk between tumor cells and fibroblasts confers proinvasive properties to the tumor microenvironment. Here, we identify leukemia inhibitory factor (LIF) as a tumor promoter that mediates proinvasive activation of stromal fibroblasts independent of alpha-smooth muscle actin (α-SMA) expression. We demonstrate that a pulse of transforming growth factor β (TGF-β) establishes stable proinvasive fibroblast activation by inducing LIF production in both fibroblasts and tumor cells.
View Article and Find Full Text PDFCellular and molecular crosstalks between cancer and non-cancer tumor-associated cells result in tumor growth and metastatic spreading. During carcinoma development, tumor cells secrete signaling molecules that influence the surrounding non-cancer cells, which, in return, favor tumor cell growth, survival, migration and metastasis. Carcinoma-associated fibroblasts (CAF) are the most abundant population of non-cancer cells found in tumors, and their presence is often associated with poor clinical prognosis.
View Article and Find Full Text PDFCancer cell invasion and dissemination from primary tumors are complex multistep mechanisms which remain poorly understood. It is now clear that cancer cells can adapt their mode of invasion to the signalling provided by the surrounding stroma. Single and collective cancer cell invasion are the two invasion features most currently observed and described by pathologists.
View Article and Find Full Text PDFProinflammatory cytokines are frequently observed in the tumor microenvironment, and chronic inflammation is involved in cancer initiation and progression. We show that cytokine signaling through the receptor subunit GP130-IL6ST and the kinase JAK1 generates actomyosin contractility through Rho-kinase dependent signaling. This pathway generates contractile force in stromal fibroblasts to remodel the extracellular matrix to create tracks for collective migration of squamous carcinoma cells and provides the high levels of actomyosin contractility required for migration of individual melanoma cells in the rounded, "amoeboid" mode.
View Article and Find Full Text PDF