Publications by authors named "Je-Lueng Shie"

This study investigated the feasibility of using/reusing commercial activated carbon (CAC) for the capture of high molecular weight and high-boiling point volatile organic compounds (HBPVOCs). The CAC was first characterized using proximate analysis, heat value analysis, iodine value analysis, element analysis, inductively coupled plasma spectrometry, and specific surface area analysis. We then assessed the adsorption/desorption performance of a CAC-based PSA system for the removal of Butyl Cellosolve (BCS), a HBPVOC commonly used in paints, coatings, cleaners, and industrial processes.

View Article and Find Full Text PDF

In this study, biomass of rice straw (RS) and wood (WD) and their torrefied biomass (RS and WD) were used as solid biofuel (SBF) for co-firing individually with coal in a commercial continuous chain-grate steam boiler system, which was conducted at fixed input rate of heating value of mixture of SBF and coal and at fixed airflow rate. The effects of key system parameters on the gaseous and particulate pollutions and ash were examined. These include SBF type and blending ratio (R) of biomass (i.

View Article and Find Full Text PDF

Magnetic polyvinyl alcohol adsorbent M-PVAL was employed to remove and concentrate dimethyl phthalate DMP. The M-PVAL was prepared after sequential syntheses of magnetic Fe3O4 (M) and polyvinyl acetate (M-PVAC). The saturated magnetizations of M, M-PVAC, and M-PVAL are 57.

View Article and Find Full Text PDF

Dimethyl phthalate (DMP) was treated via wet oxygen oxidation process (WOP). The decomposition efficiency η DMP of DMP and mineralization efficiency η TOC of total organic carbons were measured to evaluate the effects of operation parameters on the performance of WOP. The results revealed that reaction temperature T is the most affecting factor, with a higher T offering higher η DMP and η TOC as expected.

View Article and Find Full Text PDF

In this study, vinyl chloride (VC), the primary material for manufacturing polyvinyl chloride (PVC), is decomposed via catalytic oxidation (C-OX) using Pt/γ-Al2O3 catalyst. The effects of related major factors such as reaction temperature (T) and gas hourly space velocity on the conversion of VC (X) were examined. The values of T for achieving conversions of 50% and 90% are 504 and 580 K with C-OX, respectively, whereas those without Pt/γ-Al2O3 (i.

View Article and Find Full Text PDF

This study investigates the feasibility of applications of the plasma surface modification of photocatalysts and the removal of toluene from indoor environments. N-doped TiO2 is prepared by precipitation methods and calcined using a muffle furnace (MF) and modified by radio frequency plasma (RF) at different temperatures with light sources from a visible light lamp (VLL), a white light-emitting diode (WLED) and an ultraviolet light-emitting diode (UVLED). The operation parameters and influential factors are addressed and prepared for characteristic analysis and photo-decomposition examination.

View Article and Find Full Text PDF

This study deals with the effect of solar panel waste glass on fired clay bricks. Brick samples were heated to temperatures which varied from 700-1000 degrees C for 6 h, with a heating rate of 10 degrees C min(-1). The material properties of the resultant material were then determined, including speciation variation, loss on ignition, shrinkage, bulk density, 24-h absorption rate, compressive strength and salt crystallization.

View Article and Find Full Text PDF

This study examined the effects of additives of potassium carbonate (K2CO3) and zinc oxide (ZnO) on the pyrolysis of waste sunflower-oil cake using a 60 kW pilot-scale plasma torch reactor. The major gaseous products were CO and H2. The productions of CO and CH4 increased while that of H2 decreased with the addition of K2CO3.

View Article and Find Full Text PDF

TiO2 nanoparticles, doped with different Pt contents, were prepared by a modified photodeposition method using Degussa P-25 TiO2, H2PtCl6 6H2O and methanol as the solvents. The physicochemical properties of Pt/TiO2 were investigated by the nitrogen adsorption and desorption isotherm measurement technique, X-ray diffraction analysis and photoluminescence spectra, respectively. Reaction rates from photocatalytic removal of dichloromethane over Degussa P-25 TiO2 and Pt/TiO2 were evaluated.

View Article and Find Full Text PDF

To be a viable alternative, a biofuel should provide a net energy gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such potential bio-fuel in Taiwan. Through life-cycle accounting, several energy indicators and four potential gasification technologies (PGT) were evaluated.

View Article and Find Full Text PDF

In this study, a plasmatron reactor was used for gasifying the waste of distillers grains at different temperatures (773, 873, 973 K) and water flow rates (1, 2, 3 mL min(-1)), which were heated to produce steam. Among all the gas products, syngas was the major component (88.5 wt.

View Article and Find Full Text PDF

This investigation elucidates the pozzolic characteristics of pastes that contain waste brick from building construction and demolition wastes. The TCLP leaching concentrations of waste brick for the target cations or heavy metals were all lower than the current regulatory thresholds of the Taiwan EPA. Waste brick had a pozzolanic strength activity index of 107% after 28 days.

View Article and Find Full Text PDF

This study investigated the application of ozone in conjunction with Pt/Al(2)O(3) catalysts, called ozone-catalytic oxidation (OZCO) process, to destruct gaseous naphthalene (Nap). The experiments were carried out at various constant reaction temperatures (T), space velocities (SV) and inlet concentrations of ozone (C(O3,in)). The results indicate that the required T for the effective decomposition of Nap decreases with the increase in inlet concentration of ozone (C(O3,in)) at the same conversion level of Nap (X(Nap)).

View Article and Find Full Text PDF

The aim of this work was to study the feasibility and operation performance of plasma torch pyrolysis of biomass wastes, taking rice straw as the target material. This novel method has several advantages including high heating rate, short heating time, no viscous tar and low residual char (7.45-13.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) are the cause of indoor air pollution and are readily emitted from furniture and cleaning agents. In Taiwan, the concentrations of indoor VOCs range roughly from 1 to 10 ppm. It is important to effectively reduce indoor VOC emissions and establish the implementation of long-term, low-cost, controlled techniques such as those found in the ultraviolet/titanium dioxide (UV/TiO2) control systems.

View Article and Find Full Text PDF

This study discusses the thin film transistor liquid crystal display (TFT-LCD) waste glass-blended cement (WGBC) pastes. It presents their compressive strength, their products of hydration and solid silicates changes. The samples were subjected to Fourier transformation infrared spectroscopy, differential thermal and thermo-gravimetric analysis and (29)Si magnetic angle spinning/nuclear magnetic resonance.

View Article and Find Full Text PDF

This study investigated the surface modification of photocatalyst and photodecomposition of formaldehyde from indoor pollution source. This study explored the feasibility of the application of the ultraviolet light emitting diode (UVLED) instead of the traditional ultraviolet (UV) lamp to treat the formaldehyde. The photocatalytic decomposition of formaldehyde at various initial concentrations was elucidated according to the Langmuir-Hinshelwood model.

View Article and Find Full Text PDF

This study evaluated the performance of a photoreactor packed with TiO2/glass, TiO2 immobilized on glass beads, initiated by UV irradiation, denoted as UV/TiO2/glass, to decompose di-n-butyl phthalate (DBP) in an aqueous solution. The photodegradation rate of DBP by this UV/TiO2/glass process was found to obey pseudo first-order kinetics represented by the Langmuir-Hinshelwood model. The experimental results of this study show that the influence of pH value of an aqueous solution to reaction rate was negligible at the pH values 4.

View Article and Find Full Text PDF

This study evaluated the performance of photo-Fenton reaction initiated by the UV irradiation with H(2)O(2)/Fe(3+), denoted as UV/H(2)O(2)/Fe(3+), to decompose di-n-butyl phthalate (DBP) in the aqueous solution. The concentration of total organic carbon (TOC) was chosen as a mineralization index of the decomposition of DBP by the UV/H(2)O(2)/Fe(3+) process. A second-order kinetic model with respect to TOC was adequately adopted to represent the mineralization of DBP by the UV/H(2)O(2)/Fe(3+) process.

View Article and Find Full Text PDF

Basic oxygen furnace slag (BOF slag) is a solid waste arisen from the steel making process. FeO is one of the major components of BOF slag. The FeO-containing property of BOF slag makes it possible to catalyze the Fenton reaction.

View Article and Find Full Text PDF

This study investigates the ozonation of 2-naphthalenesulfonate (2-NS) combined with UV radiation in the electroplating solution. 2-NS is commonly used as a brightening and stabilization agent in the electroplating solution. Semibatch ozonation experiments were conducted under various reaction conditions to study the effects of ozone dosage and UV radiation on the oxidation of 2-NS.

View Article and Find Full Text PDF

Polynuclear aromatic hydrocarbons (PAHs), which are environmental hormones and carcinogens, are viewed as the priority pollutants to deal with by many countries. Most PAHs are hydrophobic with high boiling and melting points and high electrochemical stability, but with low water solubility. Compared with other PAH species, naphthalene has less toxicity and is easily found in the environment.

View Article and Find Full Text PDF