Publications by authors named "Je-Kyun Park"

Microextrusion printing is widely used to precisely manufacture microdevices, microphysiological systems, and biological constructs that feature micropatterns and microstructures consisting of various materials. This method is particularly useful for creating biological models that recapitulate in vivo-like cellular microenvironments. Although there is a recent demand for high-throughput data from a single in vitro system, it remains challenging to fabricate multiple models with a small volume of bioinks in a stable and precise manner due to the spreading and evaporation issues of the extruded hydrogel.

View Article and Find Full Text PDF

Gut immune models have attracted much interest in better understanding the microbiome in the human gastrointestinal tract. The gut-associated lymphoid tissue (GALT) has complex structures that interact with microorganisms, including the intestinal monolayer as a physiological barrier and the Peyer's patch (PP) involved in the immune system. Although essential for studying GALT and microbiome interactions, current research often uses simplified models that only recapitulate some components.

View Article and Find Full Text PDF

Current organ-on-a-chip technologies confront limitations in effectively recapitulating the intricate in vivo microenvironments and accommodating diverse experimental conditions on a single device. Here, a novel approach for constructing a multi-composition tumor array on a single microfluidic device, mimicking complex transport phenomena within tumor microenvironments (TMEs) and allowing for simultaneous evaluation of drug efficacy across 12 distinct conditions is presented. The TME array formed by bioprinting on a microfluidic substrate consists of 36 individual TME models, each characterized by one of three different compositions and tested under four varying drug concentrations.

View Article and Find Full Text PDF

In response to the increasing demand for spheroid-based cancer research, the importance of developing integrated platforms that can simultaneously facilitate high-throughput spheroid production and multiplexed analysis is emphasized. In addition, the understanding of how the size and cellular composition of tumors directly influence their internal structures and functionalities underlines the critical need to produce spheroids of diverse sizes and compositions on a large scale. To address this rising demand, this work presents a configurable and linkable in vitro three-dimensional (3D) cell culture kit (CLiCK) for spheroids, termed CLiCK-Spheroid.

View Article and Find Full Text PDF

Although numerous studies have been conducted to realize ideal point-of-care testing (POCT), the development of a user-friendly and user-independent power-free microfluidic platform is still a challenge. Among various methods, the finger-actuation method shows a promising technique that provides a user-friendly and equipment-free way of delivering fluid in a designated manner. However, the design criteria and elaborate evaluation of the fluid behavior of a pushbutton-activated microfluidic device (PAMD) remain a critical bottleneck to be widely adopted in various applications.

View Article and Find Full Text PDF

The application of cytocompatible hydrogels supporting extensive cellular activities to three-dimensional (3D) bioprinting is crucial for recreating complex physiological environments with high biomimicry. However, the poor printability and tunability of such natural hydrogels diminish the versatility and resolution of bioprinters. In this study, we propose a novel approach for the hybrid biofabrication of complex and heterogeneous 3D constructs using low-viscosity bioinks.

View Article and Find Full Text PDF

A tumor microenvironment (TME) is a complex system that comprises various components, including blood vessels that play a crucial role in supplying nutrients, oxygen, and growth factors, as well as delivering chemotherapy drugs to the tumor mass through the vascular endothelial barrier. To replicate the TME , several bioprinting and microfluidic organ-on-a-chip technologies have been developed. However, these technologies have not been fully exploited in terms of potential benefits of bioprinting and microfluidics, such as precise spatial control for biological samples, construction of multiple TMEs per microfluidic device, and the ability to adjust culture environments for better biological similarity.

View Article and Find Full Text PDF

Three-dimensional (3D) printing is one of the promising technologies for the fabrication of microstructures due to its versatility, ease of fabrication, and low cost. However, the direct use of 3D-printed microstructure as a microchannel is still limited due to its surface property, biocompatibility, and transmittance. As an alternative, rapid prototyping of poly(dimethylsiloxane) (PDMS) from 3D-printed microstructures ensures both biocompatibility and efficient fabrication.

View Article and Find Full Text PDF

Various metabolic diseases are associated with the accumulation of specific amino acids due to abnormal metabolic pathways, and thus can be diagnosed by measuring the level of amino acids in body fluids. However, present methods for amino acid analysis are not readily accessible because they require a complex experimental setup, expensive equipment, and a long processing time. Here, we present a dual sensing microfluidic device that enables fast, portable, and quantitative analysis of target amino acids, harnessing the biological mechanism of protein synthesis.

View Article and Find Full Text PDF

Bioprinting is a powerful biofabrication technique that mimics physiological environments and functions. Here, we describe a protocol to set up a continuous multiple-material bioprinting system that can replicate structurally complex and biologically functional microphysiological systems such as a tumor microenvironment. Although this bioprinting system uses a limited crosslinking agent, it is a versatile and advanced continuous multi-material printing technique.

View Article and Find Full Text PDF

Inflammation and the immune response in atherosclerosis are complex processes involving local hemodynamics, the interaction of dysfunctional cells, and various pathological environments. Here, a modular multichannel system that mimics the human artery to demonstrate stenosis and inflammation and to study physical and chemical effects on biomimetic artery models is presented. Smooth muscle cells and endothelial cells were cocultured in the wrinkled surface in vivo-like circular channels to recapitulate the artery.

View Article and Find Full Text PDF

Spheroid, a 3D aggregate of tumor cells in a spherical shape, has overcome the limitations of conventional 3D cell models to accurately mimic the in-vivo environment of a human body. The spheroids are cultured with other primary cells and embedded in collagen drops using hang drop plates and low-attachment well plates to construct a spheroid-hydrogel model that better mimics the cell-cell and cell-extracellular matrix (ECM) interactions. However, the conventional methods of culturing and embedding spheroids into ECM have several shortcomings.

View Article and Find Full Text PDF

In vitro patterned neuronal models have been studied as one of the strategies to investigate the relationship between structural connectivity and functional activity of neural network. Despite the importance of three-dimensional (3D) cell models, most of these studies have been performed on two-dimensional models. In this study, we present a technique to construct the micro-pattern to 3D neuronal-hydrogel model using a micromolding in capillaries (MIMIC) technique on microelectrode array (MEA).

View Article and Find Full Text PDF

The highly complex central nervous systems of mammals are often studied using three-dimensional (3D) primary neuronal cultures. A coupled confocal microscopy and immunofluorescence labeling are widely utilized for visualizing the 3D structures of neurons. However, this requires fixation of the neurons and is not suitable for monitoring an identical sample at multiple time points.

View Article and Find Full Text PDF

Hanging drop plates and low-attachment well plates are suitable for a high throughput screening model of a spheroid, because each drop (or well) contains a single spheroid and the spheroid environment are separated from each other. However, uniform spheroid culture on these devices is difficult as the liquid around the spheroid is replaced by direct pipetting, which can cause spheroid damage or loss, and well-to-well variation. If spheroids need to be cultured for a long time or analyzed through chemical treatment of immunostaining, it becomes a more considerable problem as the number of pipetting action increases.

View Article and Find Full Text PDF

Microextrusion bioprinting has been used to recreate the complex architecture and composition of a physiological system through the quick and accurate handling of various biomaterials. However, existing techniques are limited in precisely fabricating complex constructs, including multilayers and heterogeneous patterns with distinct regions, because the extruded bioink spreads rapidly upon contact with the substrate and is partially mixed with subsequently printed bioinks. This issue leads to difficulties in accurately and stably constructing multi-material structures with clear interfaces for prolonged printing before gelation.

View Article and Find Full Text PDF

We present a multiplexed microfluidic immunohistochemistry (IHC) technology that enables high-throughput analysis of tissue microarrays (TMAs) using the patterns of biomarker barcodes, which consist of a series of expressed linear patterns of specific biomarkers. A multichannel poly(dimethylsiloxane) microfluidic device was reversibly assembled by the pressure of simple equipment for multiplexed IHC on each core of TMA or cell microarray (CMA) section slides. By injecting primary antibodies from different biomarkers independently into each channel, multiplexed immunostaining can be performed on each core of TMA.

View Article and Find Full Text PDF

Microfluidic technologies have several advantages in sample preparation for diagnostics but suffer from the need for an external operation system that hampers user-friendliness. To overcome this limitation in microfluidic technologies, a number of user-friendly methods utilizing capillary force, degassed poly(dimethylsiloxane), pushbutton-driven pressure, a syringe, or a pipette have been reported. Among these methods, the pushbutton-driven, pressure-based method has a great potential to be widely used as a user-friendly sample preparation tool for point-of-care testing or portable diagnostics.

View Article and Find Full Text PDF

Here, we report a portable microfluidic device to generate and dispense droplets simply operated by pushbutton for droplet digital polymerase chain reaction (ddPCR), which is named pushbutton-activated microfluidic dropenser (droplet dispenser) (PAMD). After loading the PCR mixtures and the droplet generation oil to PAMD, digitized PCR mixtures are prepared in PCR tubes after the actuation of a pushbutton. Multiple droplet generation units are simultaneously operated by a single pushbutton, and the size of droplets is controllable by adjusting the geometry of the droplet generation channel.

View Article and Find Full Text PDF

Microalgae separation technology is essential for both executing laboratory-based fundamental studies and ensuring the quality of the final algal products. However, the conventional microalgae separation technology of micropipetting requires highly skilled operators and several months of repeated separation to obtain a microalgal single strain. This study therefore aimed at utilizing microfluidic cell sorting technology for the simple and effective separation of microalgae.

View Article and Find Full Text PDF

Fabrication of a 3D in vitro model that mimics the artery takes an important role in understanding pathological cell behaviors and mechanisms of vascular diseases by proposing an advanced model that can recapitulate a native vessel condition in a controlled manner. Because a model geometry and the structure of cells are significant for the recapitulation of the hemodynamics of arterial and cell functions, it is necessary to mimic geometries and to induce the proper morphology and orientation of the cells when fabricating a model. In this study, smooth muscle cells (SMCs) and endothelial cells (ECs), which were the main elements in the arterial wall, were cocultured in a multichannel device connected with polydimethylsiloxane (PDMS) fluidic chamber modules to parallelly fabricate a pefusable 3D in vitro human artery-mimicking multichannel system.

View Article and Find Full Text PDF

The co-culture of beta cells and endothelial cells in constructing a pancreatic pseudo-tissue can provide a functional advancement for diabetic-related drug testing and biological studies or transplantation. In order to mimic the pancreatic tissue more similar to , it is necessary to control the microenvironment, including cell-cell and cell-extracellular matrix interactions. In this study, we report a geometrically controlled three-dimensional (3D) pancreatic model where MIN6 and MS1 cells are co-cultured within a micropatterned collagen sheet.

View Article and Find Full Text PDF

Although the hanging drop methods have a number of advantages for spheroid culture, they suffer from reagent exchange procedures that depend on tedious and accurate liquid handling by manual pipetting or robotic arms. To simplify these procedures, we developed a method for liquid handling in a hanging drop array (HDA) chip for spheroid culture and analysis by integrating microfluidic channels operated by pushbuttons. Six finger-actuated microfluidic pumping units connected to a 3 × 3 HDA can draw or replenish reagents in an HDA chip without any external equipment.

View Article and Find Full Text PDF

Molecular diagnostics can provide a powerful diagnostic tool since it can detect pathogens with high sensitivity, but complicated sample preparation procedures limit its widespread use as an on-site detection tool that relies on the skilled person and external equipment. To resolve these limitations, we report a solid-phase nucleic acid purification using a finger-actuated microfluidic device, which can control a set amount of flow regardless of differences in end-users. To increase the recovery rate, a finger-actuated reciprocator was newly developed and integrated into the microfluidic device that can efficiently react with silica microbeads and reagents.

View Article and Find Full Text PDF

Although immunomagnetic separation is a useful sample pretreatment method that can be used to separate target pathogens from a raw sample, it is challenging to remove unbound free magnetic nanoparticles (MNPs) for colorimetric detection of target pathogens. Here, size-based filtration was exploited for the rapid on-site detection of pathogens separated by immunomagnetic separation in order to remove unbound free MNPs using a finger-powered microfluidic device. A membrane filter and an absorbent pad were integrated into the device and a mixture of unbound free MNPs and MNP-bound () O157:H7 was dispensed over the membrane filter by pressing and releasing the pressure chamber.

View Article and Find Full Text PDF