Publications by authors named "Je-Deok Kim"

To improve the stability of high-temperature water electrolysis, I prepared membrane electrode assemblies (MEAs) using a decal method and investigated their water electrolysis properties. Nafion 115 and crosslinked sulfonated polyphenylsulfone (CSPPSU) membranes were used. IrO was used as the oxygen evolution reaction (OER) catalyst, and Pt/C was used as the hydrogen evolution reaction (HER) catalyst.

View Article and Find Full Text PDF

Porous IrO/Ti/IrO catalyst electrodes were obtained by coating IrO on both sides of three types of porous Ti powder sheets (sample 1, sample 2, and sample 3) using different surface treatment methods, and a hydrogen evolution catalyst electrode was obtained by coating Pt/C on carbon gas diffusion layers. A Nafion115 membrane was used as an electrolyte for the membrane electrode assemblies (MEA). Water electrolysis was investigated at cell temperatures up to 150 °C, and the electrical characteristics of the three types of porous IrO/Ti/IrO catalyst electrodes were investigated.

View Article and Find Full Text PDF

A crosslinked sulfonated polyphenylsulfone (CSPPSU) polymer and polyvinyl alcohol (PVA) were thermally crosslinked; then, a CSPPSU-vinylon membrane was synthesized using a formalization reaction. Its use as an electrolyte membrane for fuel cells was investigated. PVA was synthesized from polyvinyl acetate (PVAc), using a saponification reaction.

View Article and Find Full Text PDF

Sulfonated polyphenylsulfone (SPPSU) with a high ion exchange capacity (IEC) was synthesized using commercially available polyphenylsulfone (PPSU), and a large-area (16 × 18 cm) crosslinked sulfonated polyphenylsulfone (CSPPSU) membrane was prepared. In addition, we developed an activation process in which the membrane was treated with alkaline and acidic solutions to remove sulfur dioxide (SO), which forms as a byproduct during heat treatment. CSPPSU membranes obtained using this activation method had high thermal, mechanical and chemical stabilities.

View Article and Find Full Text PDF

We have reported a simple method for separating lactic acid bacteria (LAB) from yogurt. This method is based on the process of destructions and denaturation of casein micelle aggregates by vortexing, and can supply samples containing only LAB. Recovered LAB were clearly observable by microscopy, meaning that morphological changes could be directly detected at the single-cell level.

View Article and Find Full Text PDF

We present a facile preparation method for carbonaceous film electrodes using poly(3,4-ethylenedioxythiophene) (PEDOT) and polyacetylene (PA) films as precursors a morphology-retaining carbonization process. Carbonization was performed on acceptor-doped conjugated polymer films in the temperature range of 600-1100 °C. The obtained carbonaceous films had similar surface morphologies to those of the original conjugated polymer films.

View Article and Find Full Text PDF

Considering the current application of fullerenes in the field of organic semiconductor devices, the highly crystalline or single crystal fullerene nanostructures with controlled shape and size contains some breakthrough for improved efficiency. Recently, fullerene 1-dimensional nanostructures, including nanowhiskers and nanotubes, become attractive kind of materials since the development of liquid-liquid interface precipitation (LLIP) process. The LLIP process has critical advantage; the fabrication of highly crystalline, even single crystal, fullerene 1-dimensional nanostructures with simple apparatus.

View Article and Find Full Text PDF