Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.
View Article and Find Full Text PDFThe Dishevelled (DVL) family of proteins form supramolecular protein and lipid complexes at the cytoplasmic interface of the plasma membrane to regulate tissue patterning, proliferation, cell polarity, and oncogenic processes through DVL-dependent signaling, such as Wnt/β-catenin. While DVL binding to cholesterol is required for its membrane association, the specific structural requirements and cellular impacts of DVL-sterol association are unclear. We report that intracellular sterols which accumulate within normal and pathological conditions cause aberrant DVL activity.
View Article and Find Full Text PDFPsychedelic compounds have potentially rapid, long-lasting anxiolytic, antidepressive and anti-inflammatory effects. We investigated whether the psychedelic compound (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI], a selective 5-HT receptor partial agonist, decreases stress-related behavior in male mice exposed to repeated social aggression. Additionally, we explored the likelihood that these behavioral changes are related to anti-inflammatory properties of [(R)-DOI].
View Article and Find Full Text PDFFear-associated memories and behavior are often expressed in contexts/environments distinctively different from those in which they are created. This generalization process contributes to psychological disorders, particularly PTSD. Stress-related neurocircuits in the basolateral amygdala (BLA) receive inputs from hypothalamic orexin (Orx) neurons, which mediate neuronal activity by targeting orexin 1 (OrxR) and orexin 2 (OrxR) receptors via opposing functions.
View Article and Find Full Text PDFBackground: Stress produces differential behavioral responses through select molecular modifications to specific neurocircuitry elements. The orexin (Orx) system targets key components of this neurocircuitry in the basolateral amygdala (BLA).
Methods: We assessed the contribution of intra-BLA Orx receptors (OrxRs) in the expression of stress-induced phenotypes of mice.
The stress response in rodents and humans is exquisitely dependent on the environmental context. The interactive element of the environment is typically studied by creating laboratory models of stress-induced plasticity manifested in behavior or the underlying neuroendocrine mediators of the behavior. Here, we discuss three representative sets of studies where the role of the environment in mediating stress sensitivity or stress resilience is considered across varying windows of time.
View Article and Find Full Text PDFSerotonin (5-HT) has largely been accepted to be inhibitory to vertebrate aggression, whereas an opposing stimulatory role has been proposed for invertebrates. Herein, we argue that critical gaps in our understanding of the nuanced role of 5-HT in invertebrate systems drove this conclusion prematurely, and that emerging data suggest a previously unrecognized level of phylogenetic conservation with respect to neurochemical mechanisms regulating the expression of aggressive behaviors. This is especially apparent when considering the interplay among factors governing 5-HT activity, many of which share functional homology across taxa.
View Article and Find Full Text PDFHypothalmic orexin/hypocretin (Orx) neurons in the lateral and dorsomedial perifornical region (LH-DMH/PeF) innervate broadly throughout the brain, and receive similar inputs. This wide distribution, as well as two Orx peptides (Orx and Orx) and two Orx receptors (Orx and Orx) allow for functionally related but distinctive behavioral outcomes, that include arousal, sleep-wake regulation, food seeking, metabolism, feeding, reward, addiction, and learning. These are all motivational functions, and tie the orexin systems to anxiety and depression as well.
View Article and Find Full Text PDFKnockdown of orexin/hypocretin 2 receptor (Orx) in the basolateral amygdala (BLA) affects anxious and depressive behavior. We use a new behavioral paradigm, the Stress Alternatives Model (SAM), designed to improve translational impact. The SAM induces social stress in adult male mice by aggression from larger mice, allowing for adaptive decision-making regarding escape.
View Article and Find Full Text PDFStress can be a motivational force for decisive action and adapting to novel environment; whereas, exposure to chronic stress contributes to the development of depression and anxiety. However, the molecular mechanisms underlying stress-responsive behaviors are not fully understood. Here, we identified the orphan receptor GPR158 as a novel regulator operating in the prefrontal cortex (PFC) that links chronic stress to depression.
View Article and Find Full Text PDFAnt colonies are distributed systems that are regulated in a non-hierarchical manner. Without a central authority, individuals inform their decisions by comparing information in local cues to a set of inherent behavioral rules. Individual behavioral decisions collectively change colony behavior and lead to self-organization capable of solving complex problems such as the decision to engage in aggressive societal conflicts with neighbors.
View Article and Find Full Text PDFBurying beetles exhibit facultative biparental care of young. To reproduce, a male-female burying beetle pair bury and prepare a small vertebrate carcass as food for its altricial young. During a breeding bout, male and female behavior changes synchronously at appropriate times and is coordinated to provide effective care for offspring.
View Article and Find Full Text PDFAnt colonies self-organize to solve complex problems despite the simplicity of an individual ant's brain. Pavement ant colonies must solve the problem of defending the territory that they patrol in search of energetically rich forage. When members of 2 colonies randomly interact at the territory boundary a decision to fight occurs when: 1) there is a mismatch in nestmate recognition cues and 2) each ant has a recent history of high interaction rates with nestmate ants.
View Article and Find Full Text PDF