Binary coalescences are known sources of gravitational waves (GWs) and they encompass combinations of black holes (BHs) and neutron stars (NSs). Here we show that when BHs are embedded in magnetic fields (B's) larger than approximately 10^{10} G, charged particles colliding around their event horizons can easily have center-of-mass energies in the range of ultrahigh energies (≳10^{18} eV) and become more likely to escape. Such B-embedding and high-energy particles can take place in BH-NS binaries, or even in BH-BH binaries with one of the BHs being charged (with charge-to-mass ratios as small as 10^{-5}, which do not change GW waveforms) and having a residual accretion disk.
View Article and Find Full Text PDF