Publications by authors named "Jaytry Mehta"

Ergot alkaloids are mycotoxins produced by fungi of the genus Claviceps, which infect cereal crops and grasses. The uptake of ergot alkaloid contaminated cereal products can be lethal to humans and animals. For food safety assessment, analytical techniques are currently used to determine the presence of ergot alkaloids in food and feed samples.

View Article and Find Full Text PDF

Phage display can be used for the discovery of cellular targets of small molecules in order to unravel their mechanism of action, which is important in the drug discovery field to assess biological effects of drugs at the molecular level and to investigate pharmacokinetic characteristics of drugs in clinical use. The potential of phage display in the drug discovery field is shown by a lot of successful cellular target identifications of drug-like small molecules in the last decade. More recently, phage display was also introduced in environmental science to predict risks of small molecules, like nickel, 17β estradiol and bisphenol A on both environmental and human health, wherefore knowledge about the mechanism of action and cellular targets is essential.

View Article and Find Full Text PDF

A novel, label-free folding induced aptamer-based electrochemical biosensor for the detection of chloramphenicol (CAP) in the presence of its analogues has been developed. CAP is a broad-spectrum antibiotic that has lost its favor due to its serious adverse toxic effects on human health. Aptamers are artificial nucleic acid ligands (ssDNA or RNA) able to specifically recognize a target such as CAP.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that resist natural degradation and bioaccumulate in nature. Combined with their toxicity, this leads them to cause cancer and other health hazards. Thus, there is a vital need for rapid and sensitive methods to detect PCB residues in food and in the environment.

View Article and Find Full Text PDF

Chloramphenicol (Cam), although an effective antibiotic, has lost favour due to some fatal side effects. Thus there is an urgent need for rapid and sensitive methods to detect residues in food, feed and environment. We engineered DNA aptamers that recognize Cam as their target, by conducting in vitro selections.

View Article and Find Full Text PDF

Reporter gene assays are commonly used in applied toxicology to measure the transcription of genes involved in toxic responses. In these reporter gene assays, transgenic cells are used, which contain a promoter-operator region of a gene of interest fused to a reporter gene. The transcription of the gene of interest can be measured by the detection of the reporter protein.

View Article and Find Full Text PDF

To unravel the mechanism of action of chemical compounds, it is crucial to know their cellular targets. A novel in vitro tool that can be used as a fast, simple and cost effective alternative is cDNA phage display. This tool is used in our study to select cellular targets of 17β estradiol (E2).

View Article and Find Full Text PDF

A sensitive monitoring of contaminants in food and environment, such as chemical compounds, toxins and pathogens, is essential to assess and avoid risks for both, human and environmental health. To accomplish this, there is a high need for sensitive, robust and cost-effective biosensors that make real time and in situ monitoring possible. Due to their high sensitivity, selectivity and versatility, affinity-based biosensors are interesting for monitoring contaminants in food and environment.

View Article and Find Full Text PDF
Article Synopsis
  • cDNA phage display is a method used mainly for drug development, but this study shows it can help find how chemicals like Bisphenol A (BPA) interact with cells too.
  • The study discovered two proteins that BPA binds to, which are important for how cells divide.
  • This technique could give more information about how chemicals affect cells without changing genes, helping scientists understand their effects better.
View Article and Find Full Text PDF