The human gut microbiome plays a crucial role in regulating intestinal and systemic health, impacting host immune response and metabolic function. Dysbiosis of the gut microbiome is linked to various diseases, including steatotic liver diseases. Metabolic dysfunction-associated steatotic liver disease (MASLD), a chronic liver disease characterized by excess hepatic lipid content and impaired metabolism, is the leading cause of liver disease worldwide.
View Article and Find Full Text PDFRuminococcus gnavus is a mucolytic commensal bacterium whose increased gut colonization has been associated with chronic inflammatory and metabolic diseases in humans. Whether R. gnavus metabolites can modulate host intestinal physiology remains largely understudied.
View Article and Find Full Text PDFBackground & Aims: Lacticaseibacillus rhamnosus GG (LGG) is the world's most consumed probiotic but its mechanism of action on intestinal permeability and differentiation along with its interactions with an essential source of signaling metabolites, dietary tryptophan (trp), are unclear.
Methods: Untargeted metabolomic and transcriptomic analyses were performed in LGG monocolonized germ-free mice fed trp-free or -sufficient diets. LGG-derived metabolites were profiled in vitro under anaerobic and aerobic conditions.
Glioblastomas (GBMs) are characterized by four subtypes, proneural (PN), neural, classical, and mesenchymal (MES) GBMs, and they all have distinct activated signaling pathways. Among the subtypes, PN and MES GBMs show mutually exclusive genetic signatures, and the MES phenotype is, in general, believed to be associated with more aggressive features of GBM: tumor recurrence and drug resistance. Therefore, targeting MES GBMs would improve the overall prognosis of patients with fatal tumors.
View Article and Find Full Text PDF