To acquire 3-D tracking data on juvenile salmonids, Juvenile Salmon Acoustic Telemetry System (JSATS) cabled hydrophone arrays were deployed in the forebays of two dams on the Snake River and at a mid-reach reservoir between the dams. The depth distributions of fish were estimated by statistical analyses performed on large 3-D tracking data sets from ~33,500 individual acoustic tagged yearling and subyearling Chinook salmon and juvenile steelhead at the two dams in 2012 and subyearling Chinook salmon at the two dams and the mid-reach reservoir in 2013. This research investigated the correlation between vertical migration behavior and passage routes.
View Article and Find Full Text PDFAcoustic telemetry is the primary method to actively track aquatic animals for behavioral studies. However, the small storage capacities of the batteries used in the transmitters limit the time that the implanted animals can be studied. In this research, we developed and implemented a battery-free acoustic transmitter that uses a flexible piezoelectric beam to harvest energy from fish swimming as the power source.
View Article and Find Full Text PDFLittle is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation depth in dam forebays as they approach turbines.
View Article and Find Full Text PDFBetter understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives.
View Article and Find Full Text PDFThe spectral properties of pulses transmitted by three commercially available 200 kHz echo sounders were measured to assess the possibility that marine mammals might hear sound energy below the center (carrier) frequency that may be generated by transmitting short rectangular pulses. All three sounders were found to generate sound at frequencies below the center frequency and within the hearing range of some marine mammals, e.g.
View Article and Find Full Text PDFThe Juvenile Salmon Acoustic Telemetry System (JSATS) has been used at many dams but has never been deployed in the near-dam tailrace environment. The use of JSATS in the tailrace is of interest to fishery managers to evaluate downstream passage behavior of juvenile salmonids and dam approach behavior of upstream migrating adult salmon and lamprey. The acoustic noise level and detection range of JSATS were studied to determine the feasibility of deploying JSATS in the Ice Harbor Dam tailrace.
View Article and Find Full Text PDFTurbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies.
View Article and Find Full Text PDFTo monitor the underwater sound and pressure waves generated by anthropogenic activities such as underwater blasting and pile driving, an autonomous system was designed to record underwater acoustic signals. The underwater sound recording device (USR) allows for connections of two hydrophones or other dynamic pressure sensors, filters high frequency noise out of the collected signals, has a gain that can be independently set for each sensor, and allows for 2 h of data collection. Two versions of the USR were created: a submersible model deployable to a maximum depth of 300 m, and a watertight but not fully submersible model.
View Article and Find Full Text PDF