Covalently functionalized germanane is a novel type of fluorescent probe that can be employed in material science and analytical sensing. Here, a fluorometric sensing platform based on methyl-functionalized germanane (CH Ge) is developed for gas (humidity and ammonia) sensing, pH (1-9) sensing, and anti-counterfeiting. Luminescence (red-orange) is seen when a gas molecule intercalates into the interlayer space of CH Ge and the luminescence disappears upon deintercalation.
View Article and Find Full Text PDFWearable sensors have made significant progress in sensing physiological and biochemical markers for telehealth. By monitoring vital signs like body temperature, arterial oxygen saturation, and breath rate, wearable sensors provide enormous potential for the early detection of diseases. In recent years, significant advancements have been achieved in the development of wearable sensors based on two-dimensional (2D) materials with flexibility, excellent mechanical stability, high sensitivity, and accuracy introducing a new approach to remote and real-time health monitoring.
View Article and Find Full Text PDFAssistive technology involving auditory feedback is generally utilized by those who are visually impaired or have speech and language difficulties. Therefore, here we concentrate on an auditory human-machine interface that uses audio as a platform for conveying information between visually or speech-disabled users and society. We develop a piezoresistive tactile sensor based on a black phosphorous and polyaniline (BP@PANI) composite by the facile chemical oxidative polymerization of aniline on cotton fabric.
View Article and Find Full Text PDFDue to the emergence of various new infectious (viral/bacteria) diseases, the remote surveillance of infected persons has become most important, especially if hospitals need to isolate infected patients to prevent the spreading of pathogens to health care personnel. Therefore, we develop a remote health monitoring system by integrating a stretchable asymmetric supercapacitor (SASC) as a portable power source with sensors that can monitor the human physical health condition in real-time and remotely. An abnormal body temperature and breathing rate could indicate a person's sickness/infection status.
View Article and Find Full Text PDFAdditive manufacturing technology, referred as 3D printing technology, is a growing research field with broad applications from nanosensors fabrication to 3D printing of buildings. Nowadays, the world is dealing with a pandemic and requires the use of simple sensing systems. Here, the strengths of fast screening by a lab-on-a-chip device through electrochemical detection using 3D printing technology for SARS-CoV-2 sensing are combined.
View Article and Find Full Text PDFTwo-dimensional (2D) transition metal dichalcogenide (TMDC) heterostructure is a new age strategy to achieve high electrocatalytic activity and ion storage capacity. The less complex and cost-effective applicability of the large-area TMDC heterostructure (HS) for energy applications require more research. Herein, we report the MoSe@WSe nanohybrid HS electrocatalyst prepared using liquid exfoliated nanocrystals, followed by direct electrophoretic deposition (EPD).
View Article and Find Full Text PDFNano/micromotor technology is evolving as an effective method for water treatment applications in comparison to existing static mechanisms. The dynamic nature of the nano/micromotor particles enable faster mass transport and a uniform mixing ensuring an improved pollutant degradation and removal. Here we develop thermosensitive magnetic nanorobots (TM nanorobots) consisting of a pluronic tri-block copolymer (PTBC) that functions as hands for pollutant removal.
View Article and Find Full Text PDFFlexible supercapacitors (FSCs) have received a lot of interest as portable power sources for wearable electronics. The biocompatibility of electrodes and electrolytes in wearable FSCs is important to consider although research into these topics is still in its early stages. In this work, we developed a wearable FSC that uses MXene TiC nanosheets and polypyrrole-carboxymethylcellulose nanospheres composite (TiC@PPy-CMC) as the active electrode material and sweat as the electrolyte.
View Article and Find Full Text PDFFlexible energy storage devices are becoming significantly important to power wearable and portable devices that monitor physiological parameters for many biomedical applications. Many hybrid nanomaterials based on 2D materials are used in order to improve the performance of flexible energy storage devices. Here, a hybrid nanocomposite is synthesized through in situ polymerization of aniline in the presence of black phosphorus (BP) nanoflakes.
View Article and Find Full Text PDFOwing to the rise of miniaturized wearable electronic devices in the last decade, significant demands have arisen to obtain high-performance flexible supercapacitors (FSCs). Recently, a lot of research has been focused on developing smart components of FSCs and integrating them into new device configurations. In this work, FSCs based on a TiC nanosheet (NS) and an organic ionic conductor (OIC)-induced hydrogel as the electrode and the electrolyte, respectively, were used.
View Article and Find Full Text PDFAn evolving trend toward the ever-growing market of portable and wearable electronics has accelerated development in the construction of multifunctional energy generation and storage systems that can be twisted and folded to multiple deformations while retaining their electrochemical performance. The latest advances and well developed approaches for the design of heterocyclic solid-state organic ionic conductors (SOICs) in flexible energy generation and storage devices are discussed here. The development of SOICs with improved physical, optical, and electrochemical properties provides new prospects for flexible photoelectrochemical cells and supercapacitors.
View Article and Find Full Text PDFNatural photosynthetic proteins can convert solar energy into electrical energy with close to 100% quantum efficiency, and there is increasing interest in their use for sustainable photoelectrochemical devices. The primary processes of photosynthesis remain operational and efficient down to extremely low temperatures, and natural photosystems exhibit a variety of self-healing mechanisms. Herein we demonstrate the use of an amphiphilic triblock copolymer, Pluronic F127, to fabricate a self-healing photosynthetic protein photoelectrochemical cell that operates optimally at sub-zero temperatures.
View Article and Find Full Text PDFMany exciting developments have unfolded on the recently emerged research topic of solar-driven interfacial evaporation, which is a promising technology for water purification. However, the sole heat source, i.e.
View Article and Find Full Text PDFSustainable reconversion of the large quantities of food waste generated every day is pivotal for a green urban development in future. Herein, we put forth a sustainable and cost-effective way to repurpose a commonly used food waste for solar steam generation, an important part of water desalination. Making use of moldy bread, a new route for steam generation is demonstrated.
View Article and Find Full Text PDFQuasi-solid-state dye-sensitized solar cells (DSSCs) fabricated with lightweight flexible substrates have a great potential in wearable electronic devices for in situ powering. However, the poor lifespan of these DSSCs limits their practical application. Strong mechanical stresses involved in practical applications cause breakage of the electrode/electrolyte interface in the DSSCs greatly affecting their performance and lifetime.
View Article and Find Full Text PDFA novel saturated heterocyclic organic ionic crystal, piperidinium iodide (PiHI), is synthesized by a facile route and applied as a solid electrolyte in Dye Sensitized Solar Cells (ss-DSSCs). Upon addition of a small quantity of iodine, PiHI self-assembles into a 1D lamellar micro crystalline structure that shows anisotropic conductivity. The two-component PiHI was characterized by using electrochemical impedance spectroscopy, cyclic voltammetry, steady state voltammetry, FT-IR, and Raman spectroscopy.
View Article and Find Full Text PDFThe influence of TiO film thickness on the performance of DSSCs with a new series of dyes having ortho-fluorine substituted phenyl spacers and different donor moieties is reported. Optical, electrochemical, molecular orbital and photovoltaic properties were studied by varying the TiO thickness (9 and 12 μm) using these dyes. The thickness variation of TiO films had a significant effect on the open circuit voltage (V), short circuit current (J) and efficiency.
View Article and Find Full Text PDFHumic acid (HA), a natural polymer and soil component, was explored as a photosensitizer in dye-sensitized solar cells (DSSCs). Photophysical and electrochemical properties show that HA covers a broad visible range of the electromagnetic spectrum and exhibits a quasi-reversible nature in cyclic voltammetry (CV). Because of its abundant functionalities, HA was able to bind onto the nano-titania surface and possessed good thermal stability.
View Article and Find Full Text PDFThe cell-free extract, a crude enzyme (cytosolic and membrane fraction) obtained from an environmental isolate, Bacillus pumilus sp. BAB-3706 worked as excellent in reducing as well as stabilizing agent and facilitated the formation of stable colloidal selenium nanoparticles (SeNPs). Resulting nanoparticles were characterized using UV-vis spectrophotometer, TEM, EDAX, FT-IR and XRD, respectively.
View Article and Find Full Text PDFHydrothermally grown one-dimensional ZnO nanowire (1D ZnO NW) and a newly synthesized metal-free, D-π-A type, carbazole dye (SK1) sensitizer-based photovoltaic device with a power conversion efficiency (PCE) of more than 5% have been demonstrated by employing the cobalt tris(2,2'-bipyridyl) redox shuttle. A short-circuit current density (Jsc) of ∼12.0 mA/cm(2), an open-circuit voltage (Voc) of ∼719 mV, and a fill factor (FF) of ∼65% have been afforded by the 1D ZnO NW-based dye-sensitized solar cell (DSSC) incorporating [Co(bpy)3](3+/2+) complex as the one-electron redox mediator.
View Article and Find Full Text PDF