There is a critical need for novel approaches to translate cell therapy and regenerative medicine to clinical practice. Magnetic cell targeting with site specificity has started to open avenues in these fields as a potential therapeutic platform. Magnetic targeting is gaining popularity in the field of biomedicine due to its ability to concentrate and retain at a target site while minimizing deleterious effects at off-target sites.
View Article and Find Full Text PDFObjective: There is an unmet clinical need for alternatives to autologous vessel grafts. Small-diameter (<6 mm) synthetic vascular grafts are not suitable because of unacceptable patency rates. This mainly occurs due to the lack of an endothelial cell (EC) monolayer to prevent platelet activation, thrombosis, and intimal hyperplasia.
View Article and Find Full Text PDFIntroduction: Congenital heart disease is the leading cause of death related to birth defects and affects 1 out of every 100 live births. Induced pluripotent stem cell technology has allowed for patient-derived cardiomyocytes to be studied in vitro. An approach to bioengineer these cells into a physiologically accurate cardiac tissue model is needed in order to study the disease and evaluate potential treatment strategies.
View Article and Find Full Text PDFTissue Eng Part B Rev
October 2022
The endothelium is a critical mediator of homeostasis on blood-contacting surfaces in the body, serving as a selective barrier to regulate processes such as clotting, immune cell adhesion, and cellular response to fluid shear stress. Implantable cardiovascular devices, including stents, vascular grafts, heart valves, and left ventricular assist devices, are in direct contact with circulating blood and carry a high risk for platelet activation and thrombosis without a stable endothelial cell (EC) monolayer. Development of a healthy endothelium on the blood-contacting surface of these devices would help ameliorate risks associated with thrombus formation and eliminate the need for long-term antiplatelet or anticoagulation therapy.
View Article and Find Full Text PDF