Publications by authors named "Jayne Storkson"

Background: Oxidative stress can result in damage to the brain and other organs. To protect from oxidative damage, the human body possesses molecular defense systems, based on the activity of antioxidants, and enzymatic defense systems, including the enzymes catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px). Although pre-clinical research has shown that stimulant use is associated with oxidative damage, oxidative stress and the antioxidant defense systems have not been evaluated in clinical samples of stimulant-dependent patients.

View Article and Find Full Text PDF

We previously reported that in potato chip and French fry models, the formation of acrylamide can be reduced by controlling pH during processing steps, either by organic (acidulants) or inorganic acids. Use of phytate, a naturally occurring chelator, with or without Ca++ (or divalent ions), can reduce acrylamide formation in both models. However, since phytate itself is acidic, the question remains as to whether the effect of phytate is due to pH alone or to additional effects.

View Article and Find Full Text PDF

The elongated form of conjugated linoleic acid (CLA), conjugated eicosadienoic acid (CEA, conj. 20:2delta(c11,t13/t12,c14)), was generated from CLA by liver microsomal fractions. Subsequent testing showed that dietary CEA significantly reduced body fat, and increased lean mass similar to CLA when compared to controls.

View Article and Find Full Text PDF

Conjugated linoleic acid (CLA) reduces body fat in part by inhibiting the activity of heparin-releasable lipoprotein lipase (HR-LPL) activity in adipocytes, an effect that is induced by the trans-10,cis-12 CLA isomer. In this study we used a series of compounds that are structurally related to CLA (i.e.

View Article and Find Full Text PDF

Trans-10,cis-12 conjugated linoleic acid (CLA) has previously been shown to be the CLA isomer responsible for CLA-induced reductions in body fat in animal models, and we have shown that this isomer, but not the cis-9,trans-11 CLA isomer, specifically decreased triglyceride (TG) accumulation in primary human adipocytes in vitro. Here we investigated the mechanism behind the isomer-specific, CLA-mediated reduction in TG accumulation in differentiating human preadipocytes. Trans-10,cis-12 CLA decreased insulin-stimulated glucose uptake and oxidation, and reduced insulin-dependent glucose transporter 4 gene expression.

View Article and Find Full Text PDF

Feeding diets supplemented with t10c12 conjugated linoleic acid (CLA) to growing mice reduces body fat mass. The effects are evident after 1 wk and maximal by 3 wk and are accompanied by reductions in fat cell size. This may complicate direct comparisons with adipocytes from control mice.

View Article and Find Full Text PDF

Conjugated linoleic acid (CLA) is a collective term for a group of positional and geometric conjugated dienoic isomers of linoleic acid. CLA has been shown to have strong inhibitory effects on mammary carcinogenesis both in vitro and in vivo. In this study, we investigated the regulation of human stearoyl-CoA desaturase (SCD, EC 1.

View Article and Find Full Text PDF