Background: Approximately 3.7 billion years ago, microbial life may have emerged in phosphate-rich salty ponds. Surprisingly, analogs of these environments are present in alkaline lake systems, recognized as highly productive biological ecosystems.
View Article and Find Full Text PDFOil spilled in marine environments can settle to the seafloor through aggregation and sedimentation processes. This has been predicted to be especially relevant in the Arctic due to plankton blooms initiated by melting sea ice. These conditions exist in the Kivalliq region in Nunavut, Canada, where elevated shipping traffic has increased the risk of accidental spills.
View Article and Find Full Text PDFCold surface sediments host a seedbank of functionally diverse thermophilic bacteria. These thermophiles are present as endospores, which are widely dispersed in aquatic environments. Here, we investigated the functional potential of endospore populations in cold surface sediments heated to 80°C.
View Article and Find Full Text PDFMicrobially mediated processes in a given habitat tend to be catalyzed by abundant populations that are ecologically adapted to exploit specific environmental characteristics. Typically, metabolic activities of rare populations are limited but may be stimulated in response to acute environmental stressors. Community responses to sudden changes in temperature and pressure can include suppression and activation of different populations, but these dynamics remain poorly understood.
View Article and Find Full Text PDFThe deep biosphere is the largest microbial habitat on Earth and features abundant bacterial endospores. Whereas dormancy and survival at theoretical energy minima are hallmarks of microbial physiology in the subsurface, ecological processes such as dispersal and selection in the deep biosphere remain poorly understood. We investigated the biogeography of dispersing bacteria in the deep sea where upward hydrocarbon seepage was confirmed by acoustic imagery and geochemistry.
View Article and Find Full Text PDFRecent studies have reported up to 1.9 × 10 bacterial endospores in the upper kilometre of deep subseafloor marine sediments, however, little is understood about their origin and dispersal. In cold ocean environments, the presence of thermospores (endospores produced by thermophilic bacteria) suggests that distribution is governed by passive migration from warm anoxic sources possibly facilitated by geofluid flow, such as advective hydrocarbon seepage sourced from petroleum deposits deeper in the subsurface.
View Article and Find Full Text PDFEndospore-forming bacteria make up an important and numerically significant component of microbial communities in a range of settings including soils, industry, hospitals and marine sediments extending into the deep subsurface. Bacterial endospores are non-reproductive structures that protect DNA and improve cell survival during periods unfavourable for bacterial growth. An important determinant of endospores withstanding extreme environmental conditions is 2,6-pyridine dicarboxylic acid (i.
View Article and Find Full Text PDFAt marine cold seeps, gaseous and liquid hydrocarbons migrate from deep subsurface origins to the sediment-water interface. Cold seep sediments are known to host taxonomically diverse microorganisms, but little is known about their metabolic potential and depth distribution in relation to hydrocarbon and electron acceptor availability. Here we combined geophysical, geochemical, metagenomic and metabolomic measurements to profile microbial activities at a newly discovered cold seep in the deep sea.
View Article and Find Full Text PDFRock varnish is a microbial habitat, characterised by thin (5-500 μm) and shiny coatings of iron (Fe) and manganese (Mn) oxides associated with clay minerals. This structure is well studied by geologists, and recently there have been reports about the taxonomical composition of its microbiome. In this study, we investigated the rock varnish microbiome using shotgun metagenomics together with analyses of elemental composition, lipid and small molecule biomarkers, and rock surface analyses to explore the biogeography of microbial communities and their functional features.
View Article and Find Full Text PDFThe lack of microbial genomes and isolates from the deep seabed means that very little is known about the ecology of this vast habitat. Here, we investigate energy and carbon acquisition strategies of microbial communities from three deep seabed petroleum seeps (3 km water depth) in the Eastern Gulf of Mexico. Shotgun metagenomic analysis reveals that each sediment harbors diverse communities of chemoheterotrophs and chemolithotrophs.
View Article and Find Full Text PDFThe seafloor sediments of Spathi Bay, Milos Island, Greece, are part of the largest arsenic-CO-rich shallow submarine hydrothermal ecosystem on Earth. Here, white and brown deposits cap chemically distinct sediments with varying hydrothermal influence. All sediments contain abundant genes for autotrophic carbon fixation used in the Calvin-Benson-Bassham (CBB) and reverse tricaboxylic acid (rTCA) cycles.
View Article and Find Full Text PDFA novel hyperthermophilic, piezophilic, anaerobic archaeon, designated NCB100T, was isolated from a hydrothermal vent flange fragment collected in the Guaymas basin at the hydrothermal vent site named 'Rebecca's Roost' at a depth of 1997 m. Enrichment and isolation were performed at 100 °C under atmospheric pressure. Cells of strain NCB100T were highly motile, irregular cocci with a diameter of ~1 µm.
View Article and Find Full Text PDFAnaerobic ammonium-oxidizing (anammox) bacteria have the unique ability to synthesize fatty acids containing linearly concatenated cyclobutane rings, termed "ladderane lipids." In this study we investigated the effect of temperature on the ladderane lipid composition and distribution in anammox enrichment cultures, marine particulate organic matter, and surface sediments. Under controlled laboratory conditions we observed an increase in the amount of C(20) [5]-ladderane fatty acids compared with the amount of C(18) [5]-ladderane fatty acids with increasing temperature and also an increase in the amount of C(18) [5]-ladderane fatty acids compared with the amount of C(20) [5]-ladderane fatty acids with decreasing temperature.
View Article and Find Full Text PDFBackground: The fatty acids of anaerobic ammonium oxidizing (anammox) bacteria contain linearly concatenated cyclobutane moieties, so far unique to biology. These moieties are under high ring strain and are synthesised by a presently unknown biosynthetic pathway.
Results: Gene clusters encoding enzymes of fatty acid biosynthesis in the anammox bacterium Kuenenia stuttgartiensis and 137 other organisms were analysed and compared in silico to gain further insight into the pathway of (ladderane) fatty acid biosynthesis.
Ladderane lipids are unusual membrane lipids of bacteria that anaerobically oxidize ammonium to dinitrogen gas (anammox). Ladderane lipids contain linearly concatenated cyclobutane rings for which the pathway of biosynthesis is currently unknown. To investigate the possible biosynthetic routes of these lipids, 2-(13)C-labelled acetate was added to a culture of the anammox bacterium Candidatus Brocadia fulgida.
View Article and Find Full Text PDFMicrobiological investigation of anaerobic ammonium oxidizing (anammox) bacteria has until now been restricted to wastewater species. The present study describes the enrichment and characterization of two marine Scalindua species, the anammox genus that dominates almost all natural habitats investigated so far. The species were enriched from a marine sediment in the Gullmar Fjord (Sweden) using a medium based on Red Sea salt.
View Article and Find Full Text PDFIntact ladderane phospholipids and core lipids were studied in four species of anaerobic ammonium oxidizing (anammox) bacteria, each representing one of the four known genera. Each species of anammox bacteria contained C18 and C20 ladderane fatty acids with either 3 or 5 linearly condensed cyclobutane rings and a ladderane monoether containing a C20 alkyl moiety with 3 cyclobutane rings. The presence of ladderane lipids in all four anammox species is consistent with their putative physiological role to provide a dense membrane around the anammoxosome, the postulated site of anammox catabolism.
View Article and Find Full Text PDFAnaerobic ammonium oxidizing (anammox) bacteria are detected in many natural ecosystems and wastewater treatment plants worldwide. This study describes the enrichment of anammox bacteria in the presence of acetate. The results obtained extend the concept that the anammox bacteria can be enriched to high densities in the presence of substrates for heterotrophic growth.
View Article and Find Full Text PDFLadderane lipids, containing three or five linearly concatenated cyclobutane moieties, are considered to be unique biomarkers for the process of anaerobic ammonium oxidation, an important link in the oceanic nitrogen cycle. Due to the thermal lability of the strained cyclobutane moieties, the ladderane lipids are difficult to analyze by gas chromatography. A method combining high-performance liquid chromatography coupled to positive ion atmospheric pressure chemical ionization tandem mass spectrometry (HPLC/APCI-MS/MS) was developed for the analysis of the most abundant ladderane lipids, occurring as fatty acids and ether-bound to glycerol.
View Article and Find Full Text PDFThe bacteria that mediate the anaerobic oxidation of ammonium (anammox) are detected worldwide in natural and man-made ecosystems, and contribute up to 50% to the loss of inorganic nitrogen in the oceans. Two different anammox species rarely live in a single habitat, suggesting that each species has a defined but yet unknown niche. Here we describe a new anaerobic ammonium oxidizing bacterium with a defined niche: the co-oxidation of propionate and ammonium.
View Article and Find Full Text PDF