Triple-negative breast cancers (TNBC) are typically resistant to treatment, and strategies that build upon frontline therapy are needed. Targeting the murine double minute 2 (Mdm2) protein is an attractive approach, as Mdm2 levels are elevated in many therapy-refractive breast cancers. The Mdm2 protein-protein interaction inhibitor Nutlin-3a blocks the binding of Mdm2 to key signaling molecules such as p53 and p73α and can result in activation of cell death signaling pathways.
View Article and Find Full Text PDFObjectives: The purpose of the present study was to develop and validate noninvasive bioluminescence imaging methods for differentially monitoring primary and abdominal metastatic tumor growth in mouse orthotopic models of pancreatic cancer.
Methods: A semiautomated maximum entropy segmentation method was implemented for the primary tumor region of interest, and a rule-based method for manually drawing a region of interest for the abdominal metastatic region was developed for monitoring tumor growth in orthotopic models of pancreatic cancer. The 2 region-of-interest methods were validated by having 2 observers independently segment Panc-1 tumors, and the results were compared with the number of mesenteric lymph node nodules and histopathologic assessment of liver metastases.
Humanized bone-marrow xenograft models that can monitor the long-term impact of gene-therapy strategies will help facilitate evaluation of clinical utility. The ability of the murine bone-marrow microenvironment in NOD/SCID versus NOD/SCID/γ chain(null) mice to support long-term engraftment of MGMT(P140K)-transduced human-hematopoietic cells following alkylator-mediated in vivo selection was investigated. Mice were transplanted with MGMT(P140K)-transduced CD34(+) cells and transduced cells selected in vivo.
View Article and Find Full Text PDFVirtual screening targeting the urokinase receptor (uPAR) led to (±)-3-(benzo[d][1,3]dioxol-5-yl)-N-(benzo[d][1,3]dioxol-5-ylmethyl)-4-phenylbutan-1-amine 1 (IPR-1) and N-(3,5-dimethylphenyl)-1-(4-isopropylphenyl)-5-(piperidin-4-yl)-1H-pyrazole-4-carboxamide 3 (IPR-69). Synthesis of an analogue of 1, namely, 2 (IPR-9), and 3 led to breast MDA-MB-231 invasion, migration and adhesion assays with IC(50) near 30 μM. Both compounds blocked angiogenesis with IC(50) of 3 μM.
View Article and Find Full Text PDF