Publications by authors named "Jayne Hehir-Kwa"

Germline structural variants are a risk factor for pediatric extracranial solid tumors.

View Article and Find Full Text PDF

Background: With many rare tumour types, acquiring the correct diagnosis is a challenging but crucial process in paediatric oncology. Historically, this is done based on histology and morphology of the disease. However, advances in genome wide profiling techniques such as RNA sequencing now allow the development of molecular classification tools.

View Article and Find Full Text PDF

Jayne Hehir-Kwa is based at the Princess Máxima Center for Pediatric Oncology in the Netherlands and is an associate group leader within the Kemmeren group and the Big Data Core. Her work is focused on genomic and transcriptomic sequencing of pediatric cancer and the resulting analysis, storage, and management of this large volume of valuable patient data. In this issue of Cell Genomics, her team presents the research article "Complex structural variation is prevalent and highly pathogenic in pediatric solid tumors," which illustrates complex genomic rearrangements in five pediatric cancer types.

View Article and Find Full Text PDF

In pediatric cancer, structural variants (SVs) and copy-number alterations contribute to cancer initiation as well as progression, thereby aiding diagnosis and treatment stratification. Although suggested to be of importance, the prevalence and biological relevance of complex genomic rearrangements (CGRs) across pediatric solid tumors is largely unexplored. In a cohort of 120 primary tumors, we systematically characterized patterns of extrachromosomal DNA, chromoplexy, and chromothripsis across five pediatric solid cancer types.

View Article and Find Full Text PDF

Over the past 10 years, institutional and national molecular tumor boards have been implemented for relapsed or refractory pediatric cancer to prioritize targeted drugs for individualized treatment based on actionable oncogenic lesions, including the Dutch iTHER platform. Hematological malignancies form a minority in precision medicine studies. Here, we report on 56 iTHER leukemia/lymphoma patients for which we considered cell surface markers and oncogenic aberrations as actionable events, supplemented with ex vivo drug sensitivity for six patients.

View Article and Find Full Text PDF
Article Synopsis
  • Carriers of specific genetic variants (1q21.1 distal and 15q11.2 BP1-BP2) show both regional and global brain structure differences compared to noncarriers, but analyzing these differences can be complicated.
  • The study used MRI data from various groups (carriers and noncarriers) to assess how regional brain characteristics diverge from overall brain structure differences.
  • Findings revealed that certain brain regions in carriers exhibited distinct patterns of cortical surface area and thickness that deviated from the global average, suggesting more complex effects of these genetic variants on brain development.
View Article and Find Full Text PDF

Background: Gene fusions are important cancer drivers in pediatric cancer and their accurate detection is essential for diagnosis and treatment. Clinical decision-making requires high confidence and precision of detection. Recent developments show RNA sequencing (RNA-seq) is promising for genome-wide detection of fusion products but hindered by many false positives that require extensive manual curation and impede discovery of pathogenic fusions.

View Article and Find Full Text PDF

Chromosomal alterations have recurrently been identified in Wilms tumors (WTs) and some are associated with poor prognosis. Gain of 1q (1q+) is of special interest given its high prevalence and is currently actively studied for its prognostic value. However, the underlying mutational mechanisms and functional effects remain unknown.

View Article and Find Full Text PDF

iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content.

View Article and Find Full Text PDF

Rhabdomyosarcomas (RMS) are mesenchyme-derived tumors and the most common childhood soft tissue sarcomas. Treatment is intense, with a nevertheless poor prognosis for high-risk patients. Discovery of new therapies would benefit from additional preclinical models.

View Article and Find Full Text PDF
Article Synopsis
  • The MLL/AF4 fusion gene is linked to a high-risk form of pro-B acute lymphoblastic leukemia, where relapses may switch the cancer type to acute myeloid leukemia, complicating treatment.
  • Research shows that during these relapses, the cancer cells retain specific genetic characteristics from the original leukemia and can develop from different stages of cell development.
  • Changes in chromatin accessibility and gene regulation, particularly involving the CHD4 gene, contribute to this lineage switching, suggesting that the cancer's development is driven by faulty epigenetic control.
View Article and Find Full Text PDF
Article Synopsis
  • LRFN5 is critical for synaptic development and is located in a unique genomic area linked to autism and developmental delay; its specific structural changes suggest a connection to autism susceptibility, especially in males.
  • Research indicates that a specific LRFN5 haplotype inherited from mothers is associated with autism in distant relatives, highlighting potential genetic factors contributing to this disorder.
  • An unexpected lower prevalence of a 60 kb deletion polymorphism in individuals with developmental delay suggests complex allelic interactions affecting LRFN5 regulation, which may be an epigenetic factor in the increased prevalence of autism in males.
View Article and Find Full Text PDF

Purpose: Gene fusions play a significant role in cancer etiology, making their detection crucial for accurate diagnosis, prognosis, and determining therapeutic targets. Current diagnostic methods largely focus on either targeted or low-resolution genome-wide techniques, which may be unable to capture rare events or both fusion partners. We investigate if RNA sequencing can overcome current limitations with traditional diagnostic techniques to identify gene fusion events.

View Article and Find Full Text PDF

In a subset of pediatric cancers, a germline cancer predisposition is highly suspected based on clinical and pathological findings, but genetic evidence is lacking, which hampers genetic counseling and predictive testing in the families involved. We describe a family with two siblings born from healthy parents who were both neonatally diagnosed with atypical teratoid rhabdoid tumor (ATRT). This rare and aggressive pediatric tumor is associated with biallelic inactivation of SMARCB1, and in 30% of the cases, a predisposing germline mutation is involved.

View Article and Find Full Text PDF

Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively.

View Article and Find Full Text PDF

Cancer is generally characterized by acquired genomic aberrations in a broad spectrum of types and sizes, ranging from single nucleotide variants to structural variants (SVs). At least 30% of cancers have a known pathogenic SV used in diagnosis or treatment stratification. However, research into the role of SVs in cancer has been limited due to difficulties in detection.

View Article and Find Full Text PDF

The Koolen-de Vries syndrome (KdVS) is a multisystem syndrome with variable facial features caused by a 17q21.31 microdeletion or KANSL1 truncating variant. As the facial gestalt of KdVS has resemblance with the gestalt of the 22q11.

View Article and Find Full Text PDF
Article Synopsis
  • Large-scale statistical analyses identify disease-gene relationships but fail to accurately represent how specific genetic variations affect observable traits and disease mechanisms.
  • The study focuses on the SATB1 gene, showing that different types of variants lead to similar yet distinct neurodevelopmental disorders, revealing notable genotype-phenotype relationships.
  • Variants causing strong chromatin binding lead to severe disorders, while those causing mild effects highlight the need for detailed studies on specific mutations to better understand the complexities of genetic diseases.
View Article and Find Full Text PDF

The Rho-guanine nucleotide exchange factor (RhoGEF) TRIO acts as a key regulator of neuronal migration, axonal outgrowth, axon guidance, and synaptogenesis by activating the GTPase RAC1 and modulating actin cytoskeleton remodeling. Pathogenic variants in TRIO are associated with neurodevelopmental diseases, including intellectual disability (ID) and autism spectrum disorders (ASD). Here, we report the largest international cohort of 24 individuals with confirmed pathogenic missense or nonsense variants in TRIO.

View Article and Find Full Text PDF

Background/aim: Differentiated vulvar intraepithelial neoplasia (dVIN) and lichen sclerosus (LS) can give rise to vulvar squamous cell carcinoma (VSCC), but genetic evidence is currently still limited. We aimed to determine genetic abnormalities in VSCC and backtrack these abnormalities in the dVIN and LS lesions.

Materials And Methods: DNA from VSCC and patient-matched dVIN and LS samples of twelve patients was collected.

View Article and Find Full Text PDF

Importance: Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.

View Article and Find Full Text PDF

The clinical utility of computational phenotyping for both genetic and rare diseases is increasingly appreciated; however, its true potential is yet to be fully realized. Alongside the growing clinical and research availability of sequencing technologies, precise deep and scalable phenotyping is required to serve unmet need in genetic and rare diseases. To improve the lives of individuals affected with rare diseases through deep phenotyping, global big data interrogation is necessary to aid our understanding of disease biology, assist diagnosis, and develop targeted treatment strategies.

View Article and Find Full Text PDF

Background: Diagnosis of primary immunodeficiencies (PIDs) is complex and cumbersome yet important for the clinical management of the disease. Exome sequencing may provide a genetic diagnosis in a significant number of patients in a single genetic test.

Methods: In May 2013, we implemented exome sequencing in routine diagnostics for patients suffering from PIDs.

View Article and Find Full Text PDF

By using exome sequencing and a gene matching approach, we identified de novo and inherited pathogenic variants in KDM3B in 14 unrelated individuals and three affected parents with varying degrees of intellectual disability (ID) or developmental delay (DD) and short stature. The individuals share additional phenotypic features that include feeding difficulties in infancy, joint hypermobility, and characteristic facial features such as a wide mouth, a pointed chin, long ears, and a low columella. Notably, two individuals developed cancer, acute myeloid leukemia and Hodgkin lymphoma, in childhood.

View Article and Find Full Text PDF