High pathogenicity avian influenza virus (HPAIV) is a rapidly evolving virus causing significant economic and environmental harm. Wild birds are a key viral reservoir and an important source of viral incursions into animal populations, including poultry. However, we lack a thorough understanding of which species drive incursions and whether this changes over time.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) now arise in the context of heterogeneous human connectivity and population immunity. Through a large-scale phylodynamic analysis of 115,622 Omicron BA.1 genomes, we identified >6,000 introductions of the antigenically distinct VOC into England and analyzed their local transmission and dispersal history.
View Article and Find Full Text PDFBackground: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12).
View Article and Find Full Text PDFViral discovery studies in wild animals often rely on cross-sectional surveys at a single time point. As a result, our understanding of the temporal stability of wild animal viromes remains poorly resolved. While studies of single host-virus systems indicate that host and environmental factors influence seasonal virus transmission dynamics, comparable insights for whole viral communities in multiple hosts are lacking.
View Article and Find Full Text PDFThe unprecedented pandemic COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with bats as original reservoirs, has once again highlighted the importance of exploring the interface of wildlife diseases and human health. In this study, we identified a novel from bank voles () in Grimsö, Sweden, and this virus is designated as Grimso virus. Repeated detection over three years and an overall prevalence of 3.
View Article and Find Full Text PDFLimited genomic sampling in many high-incidence countries has impeded studies of severe respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic epidemiology. Consequently, critical questions remain about the generation and global distribution of virus genetic diversity. We investigated SARS-CoV-2 transmission dynamics in Gujarat, India, during the state's first epidemic wave to shed light on spread of the virus in one of the regions hardest hit by the pandemic.
View Article and Find Full Text PDFHigh-throughput sequencing enables rapid genome sequencing during infectious disease outbreaks and provides an opportunity to quantify the evolutionary dynamics of pathogens in near real-time. One difficulty of undertaking evolutionary analyses over short timescales is the dependency of the inferred evolutionary parameters on the timespan of observation. Crucially, there are an increasing number of molecular clock analyses using external evolutionary rate priors to infer evolutionary parameters.
View Article and Find Full Text PDFThe Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases . The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions . Here we analyse 52,992 Delta genomes from England in combination with 93,649 global genomes to reconstruct the emergence of Delta, and quantify its introduction to and regional dissemination across England, in the context of changing travel and social restrictions.
View Article and Find Full Text PDFThe Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases. The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 Delta genomes from England in combination with 93,649 global genomes to reconstruct the emergence of Delta, and quantify its introduction to and regional dissemination across England, in the context of changing travel and social restrictions.
View Article and Find Full Text PDFAvian influenza virus (AIV) subtypes H5N1 and H9N2 co-circulate in poultry in Bangladesh, causing significant bird morbidity and mortality. Despite their importance to the poultry value chain, the role of farms in spreading and maintaining AIV infections remains poorly understood in most disease-endemic settings. To address this crucial gap, we conducted a cross-sectional study between 2017 and 2019 in the Chattogram Division of Bangladesh in clinically affected and dead chickens in farms with suspected AIV infection.
View Article and Find Full Text PDFThe United Kingdom's COVID-19 epidemic during early 2020 was one of world's largest and was unusually well represented by virus genomic sampling. We determined the fine-scale genetic lineage structure of this epidemic through analysis of 50,887 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes, including 26,181 from the UK sampled throughout the country's first wave of infection. Using large-scale phylogenetic analyses combined with epidemiological and travel data, we quantified the size, spatiotemporal origins, and persistence of genetically distinct UK transmission lineages.
View Article and Find Full Text PDFIn the absence of effective antiviral therapy, HIV-1 evolves in response to the within-host environment, of which the immune system is an important aspect. During the earliest stages of infection, this process of evolution is very rapid, driven by a small number of CTL escape mutations. As the infection progresses, immune escape variants evolve under reduced magnitudes of selection, while competition between an increasing number of polymorphic alleles (i.
View Article and Find Full Text PDFSevere acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses (CoVs) are zoonotic pathogens with high fatality rates and pandemic potential. Vaccine development focuses on the principal target of the neutralizing humoral immune response, the spike (S) glycoprotein. Coronavirus S proteins are extensively glycosylated, encoding around 66-87 N-linked glycosylation sites per trimeric spike.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 infection and was first reported in central China in December 2019. Extensive molecular surveillance in Guangdong, China's most populous province, during early 2020 resulted in 1,388 reported RNA-positive cases from 1.6 million tests.
View Article and Find Full Text PDFSince the ignition of the HIV-1 group M pandemic in the beginning of the 20th century, group M lineages have spread heterogeneously throughout the world. Subtype C spread rapidly through sub-Saharan Africa and is currently the dominant HIV lineage worldwide. Yet the epidemiological and evolutionary circumstances that contributed to its epidemiological expansion remain poorly understood.
View Article and Find Full Text PDFUnderstanding which HIV-1 variants are most likely to be transmitted is important for vaccine design and predicting virus evolution. Since most infections are founded by single variants, it has been suggested that selection at transmission has a key role in governing which variants are transmitted. We show that the composition of the viral population within the donor at the time of transmission is also important.
View Article and Find Full Text PDFBackground: Despite recent breakthroughs in treatment of hepatitis C virus (HCV) infection, we have limited understanding of how virus diversity generated within individuals impacts the evolution and spread of HCV variants at the population scale. Addressing this gap is important for identifying the main sources of disease transmission and evaluating the risk of drug-resistance mutations emerging and disseminating in a population.
Methods: We have undertaken a high-resolution analysis of HCV within-host evolution from 4 individuals coinfected with human immunodeficiency virus 1 (HIV-1).
The Gn subcomponent of the Gn-Gc assembly that envelopes the human and animal pathogen, Rift Valley fever virus (RVFV), is a primary target of the neutralizing antibody response. To better understand the molecular basis for immune recognition, we raised a class of neutralizing monoclonal antibodies (nAbs) against RVFV Gn, which exhibited protective efficacy in a mouse infection model. Structural characterization revealed that these nAbs were directed to the membrane-distal domain of RVFV Gn and likely prevented virus entry into a host cell by blocking fusogenic rearrangements of the Gn-Gc lattice.
View Article and Find Full Text PDFThe substantial increase in prevalence and emergence of antigenically divergent or highly pathogenic influenza A(H7N9) viruses during 2016-17 raises concerns about the epizootic potential of these viruses. We investigated the evolution and adaptation of H7N9 viruses by analyzing available data and newly generated virus sequences isolated in Guangdong Province, China, during 2015-2017. Phylogenetic analyses showed that circulating H7N9 viruses belong to distinct lineages with differing spatial distributions.
View Article and Find Full Text PDFInfluenza A virus (IAV) is ubiquitous in waterfowl. In the northern hemisphere IAV prevalence is highest during the autumn and coincides with a peak in viral subtype diversity. Although haemagglutinin subtypes H1-H12 are associated with waterfowl hosts, subtypes H8-H12 are detected very infrequently.
View Article and Find Full Text PDFHIV-1 undergoes multiple rounds of error-prone replication between transmission events, resulting in diverse viral populations within and among individuals. In addition, the virus experiences different selective pressures at multiple levels: during the course of infection, at transmission, and among individuals. Disentangling how these evolutionary forces shape the evolution of the virus at the population scale is important for understanding pathogenesis, how drug- and immune-escape variants are likely to spread in populations, and the development of preventive vaccines.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2018
Lassa virus is an Old World arenavirus endemic to West Africa that causes severe hemorrhagic fever. Vaccine development has focused on the envelope glycoprotein complex (GPC) that extends from the virion envelope. The often inadequate antibody immune response elicited by both vaccine and natural infection has been, in part, attributed to the abundance of -linked glycosylation on the GPC.
View Article and Find Full Text PDF