In this paper, which is part of a collection in honor of Noel Clark's remarkable career on liquid crystal and soft matter research, we present examples of biologically inspired systems, which form liquid crystal (LC) phases with their LC nature impacting biological function in cells or being important in biomedical applications. One area focuses on understanding network and bundle formation of cytoskeletal polyampholytes (filamentous-actin, microtubules, and neurofilaments). Here, we describe studies on neurofilaments (NFs), the intermediate filaments of neurons, which form open network nematic liquid crystal hydrogels in axons.
View Article and Find Full Text PDFNeurofilaments (NF)--the principal cytoskeletal constituent of myelinated axons in vertebrates--consist of three molecular-weight subunit proteins NF-L (low), NF-M (medium) and NF-H (high), assembled to form mature filaments with protruding unstructured C-terminus side arms. Liquid-crystal gel networks of side-arm-mediated neurofilament assemblies have a key role in the mechanical stability of neuronal processes. Disruptions of the neurofilament network, owing to neurofilament over-accumulation or incorrect side-arm interactions, are a hallmark of motor-neuron diseases including amyotrophic lateral sclerosis.
View Article and Find Full Text PDFNeurofilaments (NFs) are a major constituent of nerve cell axons that assemble from three subunit proteins of low (NF-L), medium (NF-M), and high (NF-H) molecular weight into a 10 nm diameter rod with radiating sidearms to form a bottle-brush-like structure. Here, we reassemble NFs in vitro from varying weight ratios of the subunit proteins, purified from bovine spinal cord, to form homopolymers of NF-L or filaments composed of NF-L and NF-M (NF-LM), NF-L and NF-H (NF-LH), or all three subunits (NF-LMH). At high protein concentrations, NFs align to form a nematic liquid crystalline gel with a well-defined spacing determined with synchrotron small angle x-ray scattering.
View Article and Find Full Text PDFMicrotubules are hollow cylinders composed of tubulin heterodimers that stack into linear protofilaments that interact laterally to form the microtubule wall. Synchrotron x-ray diffraction of microtubules under increasing osmotic stress shows they transition to rectangular bundles with noncircular buckled cross sections, followed by hexagonally packed bundles. This new technique probes the strength of interprotofilamen bonds, yielding insight into the mechanism by which associated proteins and the chemotherapy drug taxol stabilize microtubules.
View Article and Find Full Text PDF