AA6111 aluminum automotive body-sheet alloy has been formulated from 100% Taint Tabor scrap aluminum. Direct chill casting with and without high shear melt conditioning (HSMC) was used to produce the AA6111 alloy billets. Both homogenized and non-homogenized billets were extruded into sheets.
View Article and Find Full Text PDFThe melt conditioned direct chill (MC-DC) casting process has been used to produce billets and extruded planks of AA5754 alloy formulated from 100% recycled Taint Tabor scrap aluminum. The billets were homogenized and then extruded into flat planks. Optical metallography of the MC-DC cast billets showed equiaxed refined grains in comparison to conventional direct chill (DC) cast and direct chill grain refined (DC-GR) cast billets formulated from the same Taint Tabor scrap.
View Article and Find Full Text PDFCasting is the first step toward the production of majority of metal products whether the final processing step is casting or other thermomechanical processes such as extrusion or forging. The high shear melt conditioning provides an easily adopted pathway to producing castings with a more uniform fine-grained microstructure along with a more uniform distribution of the chemical composition leading to fewer defects as a result of reduced shrinkage porosities and the presence of large oxide films through the microstructure. The effectiveness of high shear melt conditioning in improving the microstructure of processes used in industry illustrates the versatility of the high shear melt conditioning technology.
View Article and Find Full Text PDF