Publications by authors named "Jaycie L Loewen"

The Center for Disease Control and Prevention (CDC)'s 2018 Guideline for current practices in pediatric mild traumatic brain injury (mTBI; also referred to as concussion herein) systematically identified the best up-to-date practices based on current evidence and, specifically, identified recommended practices regarding computed tomography (CT), magnetic resonance imaging (MRI), and skull radiograph imaging. In this article, we discuss types of neuroimaging not discussed in the guideline in terms of their safety for pediatric populations, their potential application, and the research investigating the future use of certain modalities to aid in the diagnosis and treatment of mTBI in children. The role of neuroimaging in pediatric mTBI cases should be considered for the potential contribution to children's neural and social development, in addition to the immediate clinical value (as in the case of acute structural findings).

View Article and Find Full Text PDF

The contribution of glial transporters to glutamate movement across the membrane has been identified as a potential target for anti-seizure therapies. Two such glutamate transporters, GLT-1 and system x, are expressed on glial cells, and modulation of their expression and function have been identified as a means by which seizures, neuronal injury, and gliosis can be reduced in models of brain injury. While GLT-1 is responsible for the majority of glutamate uptake in the brain, system x releases glutamate in the extracellular cleft in exchange for cystine and represents as such the major source of hippocampal extracellular glutamate.

View Article and Find Full Text PDF

Memory deficits have a significant impact on the quality of life of patients with epilepsy and currently no effective treatments exist to mitigate this comorbidity. While these cognitive comorbidities can be associated with varying degrees of hippocampal cell death and hippocampal sclerosis, more subtle changes in hippocampal physiology independent of cell loss may underlie memory dysfunction in many epilepsy patients. Accordingly, animal models of epilepsy or epileptic processes exhibiting memory deficits in the absence of cell loss could facilitate novel therapy discovery.

View Article and Find Full Text PDF

It is estimated that 30%-40% of epilepsy patients are refractory to therapy and animal models are useful for the identification of more efficacious therapeutic agents. Various well-characterized syndrome-specific models are needed to assess their relevance to human seizure disorders and their validity for testing potential therapies. The corneal kindled mouse model of temporal lobe epilepsy (TLE) allows for the rapid screening of investigational compounds, but there is a lack of information as to the specific inflammatory pathology in this model.

View Article and Find Full Text PDF