With the introduction of spectral CT techniques into the clinic, the imaging capacities of CT were expanded to multiple energy levels. Due to a variety of factors, the acquired signal in spectral CT datasets is shared between these images. Conventional image quality metrics assume independence between images which is not preserved within spectral CT datasets, limiting their utility for characterizing energy selective images.
View Article and Find Full Text PDFPurpose: In this work, we define a signal detection based metrology to characterize the separability of two different multi-dimensional signals in spectral CT acquisitions.
Method: Signal response was modelled as a random process with a deterministic signal and stochastic noise component. A linear Hotelling observer was used to estimate a scalar test statistic distribution that predicts the likelihood of an intensity value belonging to a signal.
Objective: Different methods can be used to condition imaging systems for clinical use. The purpose of this study was to assess how these methods complement one another in evaluating a system for clinical integration of an emerging technology, photon-counting computed tomography (PCCT), for thoracic imaging.
Methods: Four methods were used to assess a clinical PCCT system (NAEOTOM Alpha; Siemens Healthineers, Forchheim, Germany) across 3 reconstruction kernels (Br40f, Br48f, and Br56f).
Purpose: Advantages of virtual monoenergetic images (VMI) have been reported for dual energy CT of the head and neck, and more recently VMIs derived from photon-counting (PCCT) angiography of the head and neck. We report image quality metrics of VMI in a PCCT angiography dataset, expanding the anatomical regions evaluated and extending observer-based qualitative methods further than previously reported.
Methods: In a prospective study, asymptomatic subjects underwent contrast enhanced PCCT of the head and neck using an investigational scanner.
Purpose: To prospectively compare the image quality of high-resolution, low-dose photon-counting detector CT (PCD-CT) with standard energy-integrating-detector CT (EID) on the same patients.
Method: IRB-approved, prospective study; patients received same-day non-contrast CT on EID and PCD-CT (NAEOTOM Alpha, blinded) with clinical protocols. Four blinded radiologists evaluated subsegmental bronchial wall definition, noise, and overall image quality in randomized order (0 = worst; 100 = best).
Background: Quantitative imaging techniques, such as virtual monochromatic imaging (VMI) and iodine quantification (IQ), have proven valuable diagnostic methods in several specific clinical tasks such as tumor and tissue differentiation. Recently, a new generation of computed tomography (CT) scanners equipped with photon-counting detectors (PCD) has reached clinical status.
Purpose: This work aimed to investigate the performance of a new photon-counting CT (PC-CT) in low-dose quantitative imaging tasks, comparing it to an earlier generation CT scanner with an energy-integrating detector dual-energy CT (DE-CT).
Photon-counting computed tomography (PCCT) offers better high-resolution and noise performance than energy integrating detector (EID) CT. In this work, we compared both technologies for imaging of the temporal bone and skull base. A clinical PCCT system and 3 clinical EID CT scanners were used to image the American College of Radiology image quality phantom using a clinical imaging protocol with matched CTDI vol (CT dose index-volume) of 25 mGy.
View Article and Find Full Text PDFTime provides a common frame of reference for understanding different processes of change. Within the context of medical imaging, time has three different time scales to be considered: (i) microtime, (ii) mesotime, and (iii) macrotime, respectively, which span a single imaging session, distinct imaging sessions within a short period, and scans with large time gaps spanning months of even years. There has commonly been greater emphasis on the microtime and mesotime scales in both clinical practice and research, with less focus on questions that are at the macrotime scale.
View Article and Find Full Text PDFPurpose: To compare the performance of energy-integrating detector (EID) CT, photon-counting detector CT (PCCT), and high-resolution PCCT (HR-PCCT) for the visualization of coronary plaques and reduction of stent artifacts in a phantom model.
Materials And Methods: An investigational scanner with EID and PCCT subsystems was used to image a coronary artery phantom containing cylindrical probes simulating different plaque compositions. The phantom was imaged with and without coronary stents using both subsystems.
Photon-counting CT detectors are the next step in advancing CT system development and will replace the current energy integrating detectors (EID) in CT systems in the near future. In this context, the performance of PCCT was compared to EID CT for three clinically relevant tasks: abdominal soft tissue imaging, where differentiating low contrast features is important; vascular imaging, where iodine detectability is critical; and, high-resolution skeletal and lung imaging. A multi-tiered phantom was imaged on an investigational clinical PCCT system (Siemens Healthineers) across different doses using three imaging modes: macro and ultra-high resolution (UHR) PCCT modes and EID CT.
View Article and Find Full Text PDFPhoton-counting computed tomography (CT) is a developing technology that has the potential to address some limitations of CT imaging and bring about improvements and potentially new applications to this field. Photon-counting detectors have a fundamentally different detection mechanism from conventional CT energy-integrating detectors that can improve dose efficiency, spatial resolution, and energy-discrimination capabilities. In the past decade, promising human studies have been reported in the literature that have demonstrated benefits of this relatively new technology for various clinical applications.
View Article and Find Full Text PDFRationale And Objectives: The purpose of this study was to investigate the potential of photon-counting CT (PCCT) to improve quantitative image quality for low dose imaging compared to energy-integrating detector CT (EID CT).
Materials And Methods: An investigational scanner (Siemens, Germany) with PCCT and EID CT subsystems was used to compare image quality performance at four dose levels: 1.7, 2, 4, 6 mGy CTDI, all at or below current dose values used for conventional abdominal CT.
The aim of this study was to develop and validate a simulation platform that generates photon-counting CT images of voxelized phantoms with detailed modeling of manufacturer-specific components including the geometry and physics of the x-ray source, source filtrations, anti-scatter grids, and photon-counting detectors. The simulator generates projection images accounting for both primary and scattered photons using a computational phantom, scanner configuration, and imaging settings. Beam hardening artifacts are corrected using a spectrum and threshold dependent water correction algorithm.
View Article and Find Full Text PDF