Excess accumulation of collagen (fibrosis) is the hallmark of many fibrotic diseases such as keloids, hypertrophic scars, etc. The inhibition of collagen fibrillation during its accumulation is a therapeutic way to limit the fibrosis. Herein, the effect of Ferulic acid (FA), a natural phenolic acid compound, on collagen fibrillation is studied using biophysical methods.
View Article and Find Full Text PDFExcess accumulation of collagen (fibrosis) undergoes self-aggregation, which leads to fibrillar collagen, on the extracellular matrix is the hallmark of a number of diseases such as keloids, hypertrophic scars, and systemic scleroderma. Direct inhibition or disintegration of collagen fibrils by small molecules offer a therapeutic approach to prevent or treat the diseases related to fibrosis. Herein, the anti-fibrotic property of Glucono-δ-lactone (GdL), known as acidifier, on the fibrillation and its disintegration of collagen was investigated.
View Article and Find Full Text PDFNumber of incurable diseases associated with neurodegenerative syndromes like Alzheimer's, and Parkinson's, are owing to protein aggregation which leads to amyloid fibril formation. In vitro, such fibrillation depends on concentration, temperature, pH, ionic strength, organic solvents, agitation, and stirring, which play a crucial role in understanding the mechanism of fibrillation as well as to identify potential inhibitors for fibrillation. Although these parameters were considered, the precise repeatability of amyloid fibrillation kinetics between laboratories remains challenging.
View Article and Find Full Text PDFProteins under stressful conditions can lead to the formation of an ordered self-assembled structure, referred to as amyloid fibrils, to which many neurodegenerative diseases such as Type II diabetes, Alzheimer's, Parkinson's, Huntington's, etc., are attributed. Inhibition of amyloid fibril formation using natural products is one of the main therapeutic strategies to prevent the progression of these diseases.
View Article and Find Full Text PDF