Publications by authors named "Jayaraju Dheekollu"

Epstein-Barr virus (EBV) is an aetiologic risk factor for the development of multiple sclerosis (MS). However, the role of EBV-infected B cells in the immunopathology of MS is not well understood. Here we characterized spontaneous lymphoblastoid cell lines (SLCLs) isolated from MS patients and healthy controls (HC) ex vivo to study EBV and host gene expression in the context of an individual's endogenous EBV.

View Article and Find Full Text PDF
Article Synopsis
  • * EBNA1’s stability and function are influenced by interactions with Procollagen Lysine-2 Oxoglutarate 5 Dioxygenase (PLOD) proteins, particularly PLOD1, which supports EBNA1's protein levels and replication activity.
  • * Mutations in lysine residues K460 and K461 of EBNA1 affect its stability and interaction with PLOD1, illustrating how these modifications impact EBNA1’s role in viral replication and maintenance in infected cells.
View Article and Find Full Text PDF

Epstein-Barr nuclear antigen 1 (EBNA1) is a multifunctional viral-encoded DNA-binding protein essential for Epstein-Barr virus (EBV) DNA replication and episome maintenance. EBNA1 binds to two functionally distinct elements at the viral origin of plasmid replication (), termed the dyad symmetry (DS) element, required for replication initiation and the family of repeats (FR) required for episome maintenance. Here, we determined the cryo-electron microscopy (cryo-EM) structure of the EBNA1 DNA binding domain (DBD) from amino acids (aa) 459 to 614 and its interaction with two tandem sites at the DS and FR.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that persists as a multicopy episome in proliferating host cells. Episome maintenance is strictly dependent on EBNA1, a sequence-specific DNA-binding protein with no known enzymatic activities. Here, we show that EBNA1 forms a cell cycle-dependent DNA crosslink with the EBV origin of plasmid replication oriP.

View Article and Find Full Text PDF

Epstein-Barr virus is associated with several human malignancies, including nasopharyngeal carcinoma, gastric cancer, and lymphoma. Latently infected cells carry a circularized EBV episome where the origin of replication () is comprised of two elements: the family of repeats (FR) and dyad symmetry (DS). The viral protein Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) binds to FR and DS to promote EBV episome maintenance and DNA replication during latent infection in proliferating cells.

View Article and Find Full Text PDF

The molecular basis for the formation of functional, higher-ordered macro-molecular domains is not completely known. The Kaposi's Sarcoma-Associated Herpesvirus (KSHV) genome forms a super-molecular domain structure during latent infection that is strictly dependent on the DNA binding of the viral nuclear antigen LANA to the viral terminal repeats (TR). LANA is known to form oligomeric structures that have been implicated in viral episome maintenance.

View Article and Find Full Text PDF

Epstein-Barr Virus (EBV) latent infection is a causative co-factor for endemic Nasopharyngeal Carcinoma (NPC). NPC-associated variants have been identified in EBV-encoded nuclear antigen EBNA1. Here, we solve the X-ray crystal structure of an NPC-derived EBNA1 DNA binding domain (DBD) and show that variant amino acids are found on the surface away from the DNA binding interface.

View Article and Find Full Text PDF

Unlabelled: Epstein-Barr virus (EBV) establishes latent infections as multicopy episomes with complex patterns of viral gene transcription and chromatin structure. The EBV origin of plasmid replication (OriP) has been implicated as a critical control element for viral transcription, as well as viral DNA replication and episome maintenance. Here, we examine cellular factors that bind OriP and regulate histone modification, transcription regulation, and episome maintenance.

View Article and Find Full Text PDF

Telomeres protect the ends of cellular chromosomes. We show here that infection with herpes simplex virus 1 (HSV-1) results in chromosomal structural aberrations at telomeres and the accumulation of telomere dysfunction-induced DNA damage foci (TIFs). At the molecular level, HSV-1 induces transcription of telomere repeat-containing RNA (TERRA), followed by the proteolytic degradation of the telomere protein TPP1 and loss of the telomere repeat DNA signal.

View Article and Find Full Text PDF

Unlabelled: Host chromatin assembly can function as a barrier to viral infection. Epstein-Barr virus (EBV) establishes latent infection as chromatin-assembled episomes in which all but a few viral genes are transcriptionally silent. The factors that control chromatin assembly and guide transcription regulation during the establishment of latency are not well understood.

View Article and Find Full Text PDF

Telomeres repress the DNA damage response at the natural chromosome ends to prevent cell-cycle arrest and maintain genome stability. Telomeres are elongated by telomerase in a tightly regulated manner to ensure a sufficient number of cell divisions throughout life, yet prevent unlimited cell division and cancer development. Hoyeraal-Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and a broad range of pathologies, including bone marrow failure, immunodeficiency, and developmental defects.

View Article and Find Full Text PDF

To obtain an overall picture of the repair of DNA single and double strand breaks in a defined region of chromatin in vivo, we studied their repair in a ~170 kb circular minichromosome whose length and topology are analogous to those of the closed loops in genomic chromatin. The rate of repair of single strand breaks in cells irradiated with γ photons was quantitated by determining the sensitivity of the minichromosome DNA to nuclease S1, and that of double strand breaks by assaying the reformation of supercoiled DNA using pulsed field electrophoresis. Reformation of supercoiled DNA, which requires that all single strand breaks have been repaired, was not slowed detectably by the inhibitors of poly(ADP-ribose) polymerase-1 NU1025 or 1,5-IQD.

View Article and Find Full Text PDF

Kaposi's Sarcoma-associated herpesvirus (KSHV) is maintained as a stable episome in latently infected pleural effusion lymphoma (PEL) cells. Episome maintenance is conferred by the binding of the KSHV-encoded LANA protein to the viral terminal repeats (TR). Here, we show that DNA replication in the KSHV TR is coupled with DNA recombination and mediated in part through the cellular replication fork protection factors Timeless (Tim) and Tipin.

View Article and Find Full Text PDF

A variety of telomere protection programs are utilized to preserve telomere structure. However, the complex nature of telomere maintenance remains elusive. The Timeless protein associates with the replication fork and is thought to support efficient progression of the replication fork through natural impediments, including replication fork block sites.

View Article and Find Full Text PDF

The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim) associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1).

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) genome is maintained as an extrachromosomal episome during latent infection of B lymphocytes. Episomal maintenance is conferred by the interaction of the EBV-encoded nuclear antigen 1 (EBNA1) with a tandem array of high-affinity binding sites, referred to as the family of repeats (FR), located within the viral origin of plasmid replication (OriP). How this nucleoprotein array confers episomal maintenance is not completely understood.

View Article and Find Full Text PDF

The establishment and maintenance of Epstein-Barr Virus (EBV) latent infection requires distinct viral gene expression programs. These gene expression programs, termed latency types, are determined largely by promoter selection, and controlled through the interplay between cell-type specific transcription factors, chromatin structure, and epigenetic modifications. We used a genome-wide chromatin-immunoprecipitation (ChIP) assay to identify epigenetic modifications that correlate with different latency types.

View Article and Find Full Text PDF

Recombination-like structures formed at origins of DNA replication may contribute to replication fidelity, sister chromatid cohesion, chromosome segregation, and overall genome stability. The Epstein-Barr Virus (EBV) origin of plasmid replication (OriP) provides episomal genome stability through a poorly understood mechanism. We show here that recombinational repair proteins MRE11 and NBS1 are recruited to the Dyad Symmetry (DS) region of OriP in a TRF2- and cell cycle-dependent manner.

View Article and Find Full Text PDF

Chromosome ends are maintained by telomere-repeat-binding factors (TRFs) that coordinate DNA end protection with telomere replication. The origin recognition complex (ORC) coordinates bidirectional DNA replication at most chromosomal sites, but it is also known to function in transcriptional silencing, heterochromatin formation, and sister-chromatid cohesion. We now show that ORC localizes to telomere repeats and contributes to telomere maintenance.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) reactivation from latency is known to be sensitive to redox regulation. The immediate-early protein Zta is a member of the basic-leucine zipper (bZIP) family of DNA binding proteins that stimulates viral and cellular transcription and nucleates a replication complex at the viral lytic origin. Zta shares with several members of the bZIP family a conserved cysteine residue (C189) that confers redox regulation of DNA binding.

View Article and Find Full Text PDF